| Login

Resource Library



419 Results
Filter by:
Slide for More Clear All Apply

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't


  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • Portuguese
  • Spanish
Coustyx Datasheet

Overview of Coustyx by ANSOL, used for NVH analysis.

A True Full Vehicle Simulation Solution that Enables Engineers to Develop Better Products, Faster

NVH Director is a fully integrated, user-friendly, and customizable solution for optimizing product design and performance. This is achieved by automating complex NVH modeling tasks while reducing solution and problem diagnosis times.<br><br> <i>This is the recorded webinar held on February 29, 2012.</i>

An Innovative Solution for True Full Vehicle NVH Simulation

This was a 2012 Americas HTC training presentation given by Jianmin Guan. This presentation focuses on the use of NVH Director True Full Vehicle Simulation framework for NVH analysis.

Altair NVH Solutions - Americas ATC 2015 Workshop

This Workshop Presentation on NVH was conducted by Jianmin Guan at the Americas ATC on May 5, 2015. <br><br>This workshop introduced Altair full frequency and multi-physics solutions for solving the most pressing problems in the NVH field. It provided an overview of Altair’s solutions designed to facilitate the best in class NVH design process at automotive OEMs, coupled with real-time demonstrations of key product features. The focus of the workshop is on effective NVH problem resolution.

VMAP Showcase Video

2 minute video introduction to NVH software, VMAP, from TechPassion

Coustyx Showcase Video

2 minute video introduction to NVH software, Coustyx, from ANSOL

SEAM Showcase Video

Brief introduction to Cambridge Collaborative and its NVH software, SEAM.

AcuNexus Brochure

Short overview of AcuNexus, highlighting benefits and capabilities of the NVH software.

NVH Webinar Series: Transfer Path Analysis at General Motors

This webinar presents the most recent advancement in the vehicle development process at General Motors using Altair HyperWorks' Transfer Path Analysis (TPA) capabilities.

Linear Solutions with RADIOSS - Webinar

The vast majority of finite element analysis and simulation carried out today can be categorized as linear problems. When applied appropriately, this can lead to the development of better performing products with a shorted design cycle time. RADIOSS offers a comprehensive set of solutions for this domain along with the power to step up to more advanced analysis and optimization scenarios. <br><br> Run time: 28 minutes

MapleSim to VisSim

Rapid physical modeling, analysis and model deployment to VisSim.

Altair Bushing Models for the Automotive Industry

The Altair Bushing Model is a high level concept solution that can be used for all your vehicle applications. It has a library of sophisticated, frequency- and amplitude- dependent bushing models that you can use for accurate vehicle dynamics, durability and NVH simulations. The tool has been validated by BMW and Honda for robustly fitting measured data to analytical models and accurately simulating models.

Partner Spotlight: Brüel & Kjær

Alun Crewe, Vice President of Strategic Marketing at Brüel & Kjær, discusses NVH testing software, Insight+, available through the Altair Partner Alliance.

The 5 Most Common Mistakes Engineers Make In Thermal Modeling

Engineers and designers are increasingly relying on modeling solutions to prototype, test, prove and experiment as a means to more accurately predict how a built vehicle or other application will respond to various thermal conditions. While these methods are designed and promoted to save manufacturers time and money, five common mistakes made during the modeling phase can actually cost you more money, add time to the design cycle, and ultimately hurt product performance.

SwiftComp Micromechanics Manual

Manual for use with SwiftComp Micromechanics from AnalySwift

SwiftComp Micromechanics Brochure

Informational brochure about SwiftComp Micromechanics from AnalySwift

RD-2030 Modal Transient Dynamic Analysis of a Bracket

Interactive Tutorial demonstrating how to perform modal transient dynamic analysis using RADIOSS.

RD-2050 Random Response Analysis of a Flat Plate

Interactive Tutorial demonstrating how to set up the random response analysis for the existing frequency response analysis model.


<b>A Safer Landing with Water Impact Analysis</b><br><br> Using Altair’s own HyperWorks virtual simulation suite, Altair ProductDesign built an accurate finite element model of the module from CAD data supplied by NASA, as well as a section of water and air which matched the conditions from the lake used during the physical tests. The effect on the module’s structure during impact was simulated to gauge how well the results correlated with the physical tests. The results showed excellent correlation between the simulation and physical tests, identifying areas where the model, input parameters and meshing methods could be improved to give a more accurate prediction of the event.

MultiMechanics Showcase Video

2 minute video introduction to MultiMech for Composites Modeling & Analysis.

See what's new in Coustyx 4.01

Learn about the latest features and enhancements available in Coustyx 4.01.

Finite Element Modeling and Testing of Aerospace Seats under Crash Conditions

This was a 2012 Americas HTC Presentation given by Benjamin Walke from Embry-Riddle Aeronautical University. In an effort to enhance and supplement structural testing methods, specifically crash analysis, a simplified yet accurate FEA modeling method is developed to better understand a design performance during physical testing. A critical area of performance is crash test analysis. The modeling method was based upon crash conditions referenced from FAR 25.562 as well as physical test methods for crash analysis. The crash modeling utilizes HyperMesh, HyperCrash, and LS-DYNA so as to offer insight into structural performance.

Advance Electromangnetic Simulations and their Applications in Oil & Gas Industry

Advances in computational electromagnetic tools have made electromagnetic (EM) simulations possible for various applications. Now numerical simulations can be performed to evaluate the effects of antenna design, placement, radiation hazard, EMC/EMI, etc. for wide ranging industry applications. Numerical approaches that include full wave techniques such as Method of Moments (MoM), Multilevel Fast Multipole Method (MLFMM) and asymptotic techniques such as Physical Optics (PO) and Uniform Theory of Diffraction (UTD) are being utilized to solve many challenging problems that were not possible in the past.

Numerical Methods in FEKO

FEKO offers a wide spectrum of numerical methods and hybridizations, each suitable to a specific range of applications. Hybridization of numerical methods allows large and complex EM problems to be solved.

RD-2010 Modal Frequency Response Analysis of a Flat Plate

Interactive Tutorial demonstrating how to import an existing FE model, apply boundary conditions, and perform a modal frequency response analysis on a flat plate.

RD-2000 Direct Frequency Repsonse Analysis of a Flat Plate

Interactive Tutorial demonstrating how to import an existing FE model, apply boundary conditions, and perform a finite element analysis on a flat plate.

Multi-Scale Progressive Fatigue/Failure Analysis Using GENOA

A quick overview on how GENOA models Multi-Scale Progressive Fatigue/Failure Analysis in Composite Structure made of continuous fiber-reinforced polymer matrix (CFRP).

Introduction to HyperMesh

Altair HyperMesh is a high-performance finite element pre-processor to prepare even the largest models, starting from import of CAD geometry to exporting an analysis run for various disciplines.

Optimisation Techniques Leading the Development of a Steering Wheel

The early application of structural optimisation in the design of automotive components streamlines the design process and at the same time significantly increases the potential of the final design achieving maximum performance. This paper details the use of optimisation techniques during the development of a steering wheel, to generate an optimised design for cross attribute performance. This was completed in the Altair HyperWorks environment as Altair HyperMesh combined with Altair OptiStruct enables the creation of a parametric model with a multitude of design variables (i.e. size, shape, displacement, stress and frequency) in order to satisfy NVH, manufacturability, durability and crash targets.

EFEA & HyperWorks Datasheet

Capabilities and benefits of the APA's version of EFEA

SEAM & HyperWorks Datasheet

Capabilities and benefits of the APA's version of SEAM

Success Story: SEAM from Cambridge Collaborative for BMW

Publication highlighting BMW's success using SEAM

Success Story: SEAM from Cambridge Collaborative for International Truck and Engine Corporation

Publication highlighting International's success using SEAM

DOE Study Using HyperStudy and MADYMO

This tutorial outlines how to set up a DOE study in HyperStudy using Madymo as a solver.

Creating an Optimization Study Using HyperStudy and MADYMO

This tutorial illustrates how to setup an optimization study that combines MADYMO/Workspace Objective Rating with Hyperstudy.

Multibody Analysis of a Vending Machine

This was a 2013 European ATC presentation given by Dr. Marco Morone from Altran. It was performed a MB analysis of a vending machine. The aim of analysis was to analyze and optimize a cam in order to reduce the friction a acceleration peaks. A rigid MB model in Motion view was generated with contacts. From model results were optimized the cam profile was improved.

Innovative Solutions for Bird Strike, Ditching and Impact

Learn about how RADIOSS can be used to model aerospace impact events including bird strike and ditching. Explore different modeling techniques and examples.

Gasoline engine development using LOGEengine

LOGEengine is an integrated simulation method for the prediction and optimization of engine in-cylinder performance parameters and studies of fuel effects on exhaust emissions. It contains a stochastic reactor model for 0D modelling (0d-SRM) with local effects in gas-phase space, direct fuel injection, temperature and species concentrations as random variables, detailed chemical kinetics, prediction of engine exhaust emissions (Soot, NOx, uHC), turbulence consideration via mixing modeling and self-calibration. LOGEengine can also model soot formation for diesel engines using detailed kinetic soot models, with gas phase chemistry, soot particle inception, condensation, coagulation, surface growth and oxidation. It can run equivalence ratio - Temperature (f-T ) diagnostics maps for analysis of regimes of emission formation in diesel engines using zero-dimensional methods with low CPU cost. It analyses local inhomogeneities in gas-phase space for species concentration and temperature due to mixing, fuel injection and heat transfer to cylinder walls, and their influence on soot and NOx formation from different fuels and in individual combustion cycles.

NVH Solutions with RADIOSS - Webinar

This is a recording of the live webinar that took place on August 12, 2009.<br><br> Coupled fluid-structure interaction is a critical part of NVH analysis, as noise level and noise quality have become key product quality differentiators. Noise problem resolution often requires detailed analysis of fluid-structure interaction to understand how structural vibration is contributing to the acoustic response, and what design fix works over the entire analysis frequency range. RADIOSS has the industry leading fluid-structure interaction capabilities to meet your NVH analysis needs.<br><br> Run time: 44 min

Partner Spotlight: ThermoAnalytics

Craig Makens, Vice President of ThermoAnalytics, shares some interesting details about his company's thermal analysis software, RadTherm.

Powertrain NVH and Durability Analysis with HyperWorks Webinar Recording

Altair OptiStruct is used by thousands of companies worldwide to analyze and optimize structures for their strength, durability and NVH (noise, vibration and harshness) characteristics.<br><br> In this complimentary 45-minute webinar you will learn some of the most recent features introduced in OptiStruct for powertrain NVH and durability analysis, with particular emphasis on the creation of flexible bodies for engine dynamics analysis. Altair OptiStruct has recently became the first FEA solver that can directly connect to AVL EXCITE to produce a ‘body property’ input data file (.exb) without the generation of intermediate files requiring translation. <br><br> Specific case studies will be shown to demonstrate how these new capabilities lead to significant improvements in turnaround time and robustness of the engine dynamics analyses.

Altair’s Solutions for Full-Vehicle NVH Analysis

An important factor in improving vehicle quality and perception is guided by how vehicles are designed for noise, vibration and harshness, making NVH an important domain for the automotive industry. Altair and its Alliance Partners offer a complete solution for automotive NVH applications.<br><br> In this 45-minute webinar, we will give an overview of problems faced in the automotive industry for NVH analysis and how HyperWorks and Altair’s Partner technologies help address these issues, providing a complete solution that spans from modeling and assembly to analysis, diagnostic and optimization.<br><br> Presenters:<br> Jianmin Guan, Director, Vibration and Acoustics Solutions, Altair<br> Vijay Ambarisha, Senior Project Engineer, ANSOL<br> Jerry Manning, President, Cambridge Collaborative<br> Francois-Xavier Becot, Co-manager, Matelys<br>

Time v Frequency Domain Analysis For Large Automotive Systems

It has been recognised since the 1960’s that the frequency domain method for structural analysis offers superior qualitative information about structural response; But computational and technological issues have held back the implementation for fatigue calculation until now. Recent technological developments have now enabled the practical implementation of the frequency domain approach and this paper will demonstrate this, with particular reference to the technology limitations that have been overcome, the resultant performance advantages, and accuracy. These techniques are of relevance to all the large automotive OEM’s as well as aerospace T1 suppliers and example case studies from these companies will be included.

Forming Simulation of Woven Composite Fibers and Its Influence on Crash Performance

The automotive industry, in its constant quest for weight reduction, is increasingly considering composite materials as a substitute for sheet metal components to meet future fuel consumption standards. However, composite forming processes are expensive and difficult to control because of the complexity of the material behavior with fiber and matrix layers or plies and its dependency on many parameters, such as non-linearity of tensile stiffness, effect of shear rate, temperature and friction. Hence, numerical simulation could be a viable approach to predict material behavior during composite forming. The objective of this study is to highlight capabilities of RADIOSS™ to simulate forming simulation of composite plies made from woven fibers, each ply modeled as a layer of woven fibers along two directions of anisotropy, warp and weft. For validation the well-known double dome model published in NUMISHEET’05 proceedings is used. The compared result is the shear angle after stamping that is, the final angle between warp and weft fibers, at several prescribed points on the ply. The variation of this angle has a strong impact on material characteristics which severely deteriorates when a critical value is reached. Hence, a study on crash simulations is performed, after mapping fibers angles from stamping simulation.

About: GENOA & RADIOSS Module

Document outlining the GENOA/RADIOSS integration, including detailed instructions.

Partner Spotlight: AlphaSTAR Corporation

Interview with the AlphaSTAR CTO, Dr. Frank Abdi, about the challenges addressed by composite analysis software GENOA and MCQ-Composites

Interview with Hamish Lewis from TES International

Interview with TES International Engineering Manager, Hamish Lewis, discussing their software ThermoFlo & ElectroFlo

LAP Product Datasheet

Laminate Analysis Program (LAP) Product Datasheet from Anaglyph

COUSTYX Fast Multipole Acoustics

This was a 2010 Americas HTC Presentation given by Rajendra Gunda from ANSOL. Traditional Boundary Element Methods (BEM) for acoustic analysis have difficulty with large models and are thus limited to analysis of small bodies at low frequencies. Integration of the Fast Multipole Method (FMM) with BEM formulations in Coustyx results in vastly superior performance. In this presentation as a HyperWorks Alliance Partner, several automotive applications will highlight the computational speed and accuracy of Coustyx predictions.

HyperMesh and HyperView customization for thermal analysis of engine systems

This was a 2010 Americas HTC Presentation given by Emil Chouinard from GE Aviation. GE Aircraft Engines has many NPI (new product initiative) programs that rely on accurate and timely thermal analysis, as temperatures are critical to accurate estimates of hardware life. HyperMesh and HyperView have been customized as the pre and post processing tools, respectively, for thermal analysis of engine systems. The single database with relational data management greatly reduces modeling errors and results in Engineers being able to focus on the physics of the problem instead of data management.

FEKO Integrated in HyperWorks 14.0

Altair’s computer-aided engineering (CAE) simulation software platform for simulation-driven innovation is Hyper- Works, which includes modeling, visualization, analysis and optimization technologies and solutions for structural, impact, electromagnetics, thermal, fluid, systems and manufacturing applications. The electromagnetics solver suite in HyperWorks is FEKO, a comprehensive electromagnetic analysis software used to solve a broad range of electromagnetic problems. It includes a set of hybridized solvers, giving the possibility to combine methods to solve complex and electrically large problems, with all solvers included in the same package.

Blank Fit Manager

Blank Fit Manager offers accurate feasibility analysis, efficient cost analysis, an automated and flexible process and seamless forming data mapping.

Building a Better Impact / Crash Mesh Model (HyperMesh)

Finite element models to be used in crash analysis have unique requirements and Impact and Crash Simulations are especially sensitive to element size and quality. A combination of presentation and live demonstrations will highlight the powerful meshing capabilities of HyperMesh. Meshing techniques from basic to advanced will be shown that will provide insight into creating better crash models using the powerful tools within HyperMesh.

  • View Webinar Recording The Computational Fluid Dynamics (CFD) simulation environment is advancing rapidly and reducing many of the typical barriers for using advanced optimization techniques for design of CFD applications. In this webinar learn how the Altair HyperWorks suite of CAE tools can provide an unmatched solution that enables engineers and companies to overcome the challenges of optimization driven design of CFD applications.
Introduction to HyperCrash

HyperCrash is a robust pre-processing environment specifically designed to automate the creation of high-fidelity models for crash analysis and safety evaluation. Developed in cooperation with the industry's leading manufacturers, HyperCrash increases departmental efficiency and results accuracy through process driven workflows and automated model checking and correction.

Application of HyperWorks in the Subsea Oil and Gas Industry

The volatile nature of deep sea installations presents a difficult challenge for engineers to create products which can withstand extremely high pressures in a variety of weather conditions. Duco selected HyperWorks to model subsea umbilicals, resulting in improvements to their analysis productivity allowing models to be constructed faster than before.

HyperWorks Improves Development Processes in Automotive Industry

In 2008 PWO Germany (Progress-Werk Oberkirch AG) had to develop and produce a new steel made automotive cross car beam (CCB) for the dash board of a new car. PWO received the CAD model, the design space definition and other pre-defined standards of the component from the customer and developed and produced the fitting cross beam based on this information. PWO used the HyperWorks Suite to develop the component. HyperMesh was used to transfer the CAD model into a FEA model, which was then used to run dedicated analysis and simulation tasks. To fulfill the requirements for crash and modal analysis, the company used OptiStruct to optimize the component, RADIOSS and other external solver to run the calculations and HyperView for the post processing. HyperForm was used to check the production feasibility of the individual components and for metal forming simulation tasks. It was important for PWO to have a software suite available that could cover all simulation tasks within one graphical user interface and licensing system.

Daimler - Calculation of Optimal Damping Placement in a Vehicle Interior

One of the most difficult jobs of a NVH Analyst is to sift through a seemingly endless set of results and find the key conclusions that will improve a design. Different assumptions and different subsets of data can give very different conclusions. This paper compares acoustic results calculated for a Class 8 heavy duty truck cab to choose an optimal configuration of damping material. The design was evaluated for structure and air-borne inputs, but only structure-borne inputs are considered in this paper.

The Use of System Modelling Techniques to Filter Test Measurements and Drive a Physical Vehicle NVH Simulator

Bentley Motors sought to understand whether real-life physical NVH testing with alternative powertrains could be accurately correlated in a simulation environment to reduce development cost and time of future luxury vehicles.<br></br>

CDTire: State-of-the-Art Tire Models For Full Vehicle Simulation

This was a 2012 Americas HTC Presentation given by Axel Gallrein from Fraunhofer. CDTire is a family of sophisticated tire models capable of accurately representing the dynamic behavior of tires and the road-tire interaction. This presentation gives an overview of tire modeling methods developed at Fraunhofer and made available through CDTire.

Modeling and Analysis of the Battery Packs and Modules in A123 Systems

This was a 2012 Americas HTC Presentation given by Shawn Zhang & Binshan Ye from A123 Systems. In A123 Systems, CAE/FEA tools are widely used to improve the efficiency of the design on battery packs and modules. A123 engineers utilize Altair’s HyperWork Suite for structural FEA including linear and nonlinear statics analysis, modal frequency and random vibration analysis, as well as nonlinear dynamic analysis such as mechanical shock and drop test analysis.

Optimization Training - Altair OptiStruct

This was an Optimization training presentation given by Warren Dias at the 2012 Americas HTC. This presentation focuses on Altair OptiStruct.

Making the Switch: Nastran to RADIOSS

Discover the ease of transitioning from NASTRAN to RADIOSS. When choosing a solver solution, companies take many factors into account such as price, scalability, quality and reliability. Consideration should also be given to issues that directly impact productivity. When dealing with solvers, these issues can range from poor accuracy to wasted time spent on debugging when insufficient warning messages are provided. Altair HyperWorks and RADIOSS provide a complete CAE solution that breaks down the classical issues that can hinder CAE productivity.

Nonlinear Gap Analysis Using RADIOSS

This was a 2010 Americas HTC Presentation given by Amandeep Singh from Bombardier Transportation. In this paper, the contact analysis using RADIOSS CGAP is presented, and a methodology is presented to use CGAP in linear analysis using results from non-linear analysis. The RADIOSS CGAP element is efficient in simulating contact offering fast convergence, default setting of many parameters and robust analysis.

The Application of Process Automation and Optimisation in the Rapid Development of New Passenger Vehicles at SAIC Motor

As a relatively young automotive company, SAIC Motor has drawn on the expertise of its UK Technical Centre to help in its objective to bring a new range of vehicles to market in an aggressive time frame. CAE has formed an integral part in doing this and the UK technical centre has worked closely with Altair Product Design amongst others to utilise its Engineers’ skills as well as the Hyperworks suite of software. The paper aims to showcase what has been achieved to date, on the Roewe 550 medium car programme - currently on sale in China - and on another current vehicle programme, where processes have been developed further. Several interesting optimisation examples are highlighted in the development of the body structure as well as some key process improvement methodologies which have been jointly developed between SAIC and Altair to streamline the design process.

RADIOSS 10.0 Overview for Structures, Vibrations, and Durability

A high level overview of the new features for RADIOSS 10.0 for Structures, Vibrations and Durability.

Using Topology Optimization to determine optimal locations and designs of Terocore® structural foam automotive body reinforcements to improve vehicle NVH characteristics

Henkel used topology optimization to find the optimum areas for foam reinforcements in a automotive BIW structure to maximum bending and torsional stiffness. Henkei found that performance could be increased by as much as 25 percent.<br><br><i><b>Download available to registered Clients only</i></b>

HyperWorks at Changchun Railway Vehicle Co., Ltd.: Accelerating Design and Analysis of High-Speed Railcars

Asia's largest railway vehicle manufacturer, Changchun Railway Vehicle Co., Ltd. (CRC), was looking for ways to increase development efficiency through streamlined CAE processes. By implementing HyperWorks, Altair's engineering framework for product design, CRC was able to reduce modeling cycle time by up to 50 percent. In addition, simulations were more accurate as a result of better model quality.

MATELYS Partner Spotlight

Luc Jaouen of MATELYS discusses the Noise, Vibration & Harshness tool, AlphaCell, which specializes in porous materials.

Structural damage detection using FRF

Webinar hosted by TechPassion focusing on the detection of strutural damange using the frequency response function.

EFEA Examples

Files to use for practice in the EFEA Solver.

Coustyx Users Manual

User manual for Coustyx 4.01.

Coustyx & HyperWorks Datasheet

Capabilities and benefits of the APA's version of Coustyx

VMAP & HyperWorks Datasheet

Capabilities and benefits of the APA's version of VMAP

Publications That Include EFEA

List of publications with relation to EFEA

Partner Spotlight: Cambridge Collaborative

Q&A with Principle Scientist, Patricia Manning, of Cambridge Collaborative

VMAP Technical Description and Demo Video

10 minute video about the technical capabilities of VMAP as well as a short demo of the software

AlphaCell for Aerospace: Design, Optimize and Understand Your NVH Treatment

For optimizing the sound packages in project early stages, the Transfer Matrix Method (TMM) as implemented in AlphaCell is a reliable method.

Rapid Virtual Prototyping for Thermal Analysis of Electronics

Presentation highlighting applications and trends regarding rapid prototyping in the thermal analysis of electronics.

FEKO: Characteristic Mode Analysis for Ultra-Wideband Antenna Design

FEKO’s Characteristic Mode Analysis capability is used to improve an ultra-wideband antenna.

StressCheck Showcase Video

2 minute video introduction to stress analysis software, StressCheck, from ESRD

MADYMO Showcase Video

2 minute video introduction to impact analysis software from TASS-International.

RadTherm Showcase Video

2 minute video introduction to thermal analysis software from ThermoAnalytics.

OntoNet User Guide for CAE

OntoNet a compexity analysis engine.

ChassisSim Showcase Video

2 minute video introduction to ChassisSim for multibody dynamics analysis.

DSM Success Story

Thermal Analysis of LED Lamps using AcuSolve

HyperWorks On-Demand at HYDAC

HyperWorks On-Demand helps HYDAC with optimization of fluid analysis.

BikeSim Brochure

Overview of BikeSim, for performing Multibody Dynamics Analysis on motorcycles and other motorized bikes.

ChassisSim Datasheet

Brief introduction and overview brochure to MDB Analysis technology, ChassisSim.

Automation of Engineering Analysis and Design Process in Subsea Industry

Automation of Engineering Analysis and Design Process in Subsea Industry

Partner Spotlight: Maplesoft

Jim Dell, the Vice President of Marketing at Maplesoft, discusses MapleSim and Maple for mathematic analysis and analytics.

CAE in the Nanotech-enabling World

Zyvex engineers use finite-element analysis to build microscopically small devices.

CFD 10.0 Overview

A high level overview of the new and enhanced features for CFD Analysis in HyperWorks.

Reliability Based Design Optimization in HyperStudy 10.0

A demonstration of the new Reliability Based Design Optimization Analysis available in HyperStudy 10.0.

1 Step Along Arbitrary Direction

A demonstration of the 1-Step stamping analysis using an arbitrary direction in HyperForm.

Streamline Creation in HyperView

A demonstration of streamline creation for CFD analysis results in HyperView 10.0.

RD-2020 Direct Transient Dynamic Analysis of a Bracket

Interactive Tutorial demonstrating how to perform direct transient dynamic analysis using RADIOSS.

RD-2040 Nonlinear Gap Analysis of an Airplane Wing Rib

Interactive Tutorial demonstrating how to perform nonlinear gap analysis using RADIOSS.

Page: 1  2   3   4   5  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.