| Login


Resource Library

Keyword
GO
Categories










Industries














371 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • Portuguese
  • Spanish
HyperWorks 12.0 Rollout Webinar Series HyperStudy for Multi-Disciplinary Design Exploration and Optimization (NEW!)



Multi-physics with MotionSolve

This was a 2012 Americas HTC Presentation given by Keshav Sundaresh & Rajiv Rampalli from Altair. Due to its system level focus, multi-body simulation is a natural environment for integrating the different technologies together. MotionSolve is an Industry proven multi-body simulation tool that provides a logical environment to integrate different technologies and solve the combined problem. This presentation discusses three topics: (a) The need for multi-disciplinary simulations and strategies for combining models; (b) Simulating real world phenomena using MotionSolve; (c) Case studies illustrating how customers have successfully used MotionSolve to solve multi-physics problems.

OptiStruct Plays a Key Role in the Air Wing Design for a Multi-Disciplinary, Collaborative University Capstone Design Project

The Georgia Tech Institute of Technology (Georgia Tech) took the lead in collaborating with five Universities to develop a senior-level capstone design course that would give engineering students collaborative design experience using state-of the art computational tools. The multi-disciplinary course was completed over two semesters. Students, under the direction of University professors and industrial mentors, completed a fixed-wing aircraft design.

Optimal Design Exploration Using Global Response Surface Method: Rail Crush

As design exploration and optimization methods have become commonly accepted across a range of industries, such as aerospace, automotive or oil and gas, they are frequently utilized as standard practice to efficiently produce designs and aid critical engineering decisions. The widespread acceptance of these methods coupled with the power of modern computing has led to applications across a range of design problems and ever-increasing complexity. The size and scope of this expansion continually pushes the boundaries of existing exploration and optimization methods. Furthermore, a complete exploration of the optimal design space includes computationally intensive features such as multi-objective optimization, to understand the trade-off between competing objectives, and global optimization, to avoid local extrema.

Reliability Based Design Optimization in HyperStudy 10.0

A demonstration of the new Reliability Based Design Optimization Analysis available in HyperStudy 10.0.

HyperWorks 13.0 System Performance Multiphysics

Altair is the industry leader in multiphysics with comprehensive and in depth solution coverage across a wide range of applications. HyperWorks 13.0 enables system performance optimization and provides many tools for multi-disciplinary applications. Join this webinar session to learn more about the Altair multiphysics technology, particularly in the area of multi-body dynamics analysis coupled with CFD (MotionSolve’s co-simulation with AcuSolve), as well as the many enhancement and new features included in MotionSolve for system performance analysis and optimization.

Tesla Optimizes CAE - Desktop Engineering Reprint

Automating CAE connectors creation in HyperMesh and utilizing HyperStudy for pedestrian impact simulation helped optimize Tesla’s design cycle and get better crash and safety performance.

Optimization Driven Design of CFD Applications

The Computational Fluid Dynamics (CFD) simulation environment is advancing rapidly and reducing many of the typical barriers for using advanced optimization techniques for design of CFD applications. In this webinar learn how the Altair HyperWorks suite of CAE tools can provide an unmatched solution that enables engineers and companies to overcome the challenges of optimization driven design of CFD applications.

Optimal Design Exploration Using Global Response Surface Method: Rail Crush

As design exploration and optimization methods have become commonly accepted across a range of industries, such as aerospace, automotive or oil and gas, they are frequently utilized as standard practice to efficiently produce designs and aid critical engineering decisions. This paper present an overview of the practical usage of Altair HyperStudy's GRSM optimization algorithm, followed by application problems of rail crush design optimization for a single and multi-objective formulation.

Minimising Mass and Increasing Durability of a Vehicle Suspension System Using OptiStruct

Gestamp selected Altair to develop a set of custom tools within HyperWorks, eliminating the need for an initial 'trial and error' design loop while reducing mass and increasing durability of a rear twist beam suspension system. The company achieved a reduction in lead time while producing competitive low cost, low mass RTB designs.

The Automatic Calibration and Robustness Assessment of a Complex Engineering Component: Airbag Inflation

This paper describes the application of new technology to achieve automatic calibration and assess the robustness of an airbag inflation model. Calibration of the kinematic response of the airbag is achieved by defining the activity as an optimisation problem. The objective is to minimise the error between the experimental test and numerical simulation curves. Once calibration has been achieved, a unique robustness assessment is performed, which utilises the optimisation technology used in the calibration exercise.

Workshop28 - Coupling AcuSolve and HyperStudy

This tutorial demonstrates how to provide a DOE study using AcuSolve and HyperStudy

Moldex3D, Structural Analysis, and HyperStudy Integrated in HyperWorks Platform

Description of the integration between Moldex3D and HyperStudy

HyperStudy 12.0 New Features Overview

A high level overview if new or enhanced features in HyperStudy 12.0.

HyperWorks 13.0 Design Exploration Optimization

HyperWorks 13.0 enables product innovation with design exploration and optimization tools like HyperStudy and OptiStruct. Watch this webinar to learn more about new features and enhancements such as new response types and multi-model optimization (MMO) in OptiStruct, integration with MS Excel available in both HyperStudy and OptiStruct for easier tradeoff studies and response calculation, and many others.

Northwestern University Success Story

Using HyperWorks for Teaching Computational Optimization Methods in Engineering Design at Northwestern University

The Complete Package: Applying Altair's Technology Process to Reusable Packaging Design

This paper demonstrates the flexibility that Altair technology provides throughout the design process with tools applicable to all stages. An overview of the LINPAC design process incorporating Altair's technology is given together with examples of how and which tools are being implemented. The limitations of the traditional LINPAC approach and the use of Altair's tools is demonstrated through the use of a detailed example; without the use of Altair technology, more iterations in expensive tool modifications would have been required to achieve a satisfactory design without introducing unacceptable costs.

Step Change in Design: Exploring Sixty Stent Design Variations Over Night

Traditionally, computer analysis has been used to verify the structural performance of a proposed stent design. The stent deployment process consists of multiple stages (e.g. crimping, springback, expansion etc.) which is highly non-linear inducing material plasticity and load transfer via component contact. A single structural verification assessment would require a couple of days to compute on a PC. This paper investigates how recent developments in Computer Aided Engineering (CAE) and computer hardware combine to facilitate the rapid exploration of many stent design variations. It is demonstrated that by utilising these technologies, over sixty stent design variables can be assessed overnight provides valuable design sensitivity information and an optimum stent geometry configuration. On an example baseline geometry considered the radial stiffness was significantly enhanced with an improvement in structural performance. This represents a step change in the CAE assessment of a stent design.

Seat Design for Crash in the Cloud - NAFEMS World Congress 2015

The benefit of design exploration and optimization is understood and accepted by engineers but the required intensive computational resources have been a challenge for their adoption into the design process. The HyperWorks Unlimited (HWUL) appliance provides an effective solution to these challenges as it seamlessly connects all the necessary tools together in the cloud. The aim of this study is to showcase the benefits of HWUL on an optimization driven design of a complex system. For this purpose an automotive seat design for crash loadcases is selected.

Design-Optimization of a Curved Layered Composite Panel Using Efficient Laminate Parameterization

In this paper, presented at the 2016 SAMPE Long Beach Conference, an aircraft door surround model is optimized with respect to the objectives and constraints typical for this type of component using HyperStudy and ESAComp.

ESAComp for Aerospace

One page flyer showcasing how ESAComp can be applied for design optimization in the aerospace industry.

Introduction to ChassisSim

Learn about the multi body vehicle dynamics offerings available through ChassisSim.

MapView CAE Datasheet

MapView is a revolutionary tool for analyzing multi-dimensional data, allowing users to explore itsentire structure.

Co-Simulation: DSHplus + MotionSolve

Presentation outlining the multiphysics workflow between DSHplus and MotionSolve.

Multi-Objective Optimization Study of LED Light using SC/Tetra and HyperStudy

2014 presentation by Software Cradle at the European ATC demonstrating how SC/Tetra worked with HyperStudy in the optimization of an LED light.

DOE Study Using HyperStudy and MADYMO

This tutorial outlines how to set up a DOE study in HyperStudy using Madymo as a solver.

Creating an Optimization Study Using HyperStudy and MADYMO

This tutorial illustrates how to setup an optimization study that combines MADYMO/Workspace Objective Rating with Hyperstudy.

High Fidelity Vehicle Simulations Using MotionSolve-FTire and ChassisSim

Learn more about how you can leverage two of our leading multi-body simulation partners: cosin scientific software and ChassisSim Technologies for accurately performing vehicle simulations.

Multi-Scale Progressive Fatigue/Failure Analysis Using GENOA

A quick overview on how GENOA models Multi-Scale Progressive Fatigue/Failure Analysis in Composite Structure made of continuous fiber-reinforced polymer matrix (CFRP).

A New Approach to Optimizing the Clean Side Air Duct Using CFD Techniques

An integrated approach to CFD design optimization is proposed. It consists of taking an initial CAD design, meshing it using HyperMesh, analysing it using Star-CD, parameterising its key features using HyperMorph, and then shape optimizing it using HyperStudy. This approach has been applied here to the shape optimization of the compressor inlet duct of a turbo system.

Optimising Vehicle Dynamics for Student Racing with Altair University

You will learn how to use multi-body dynamics (MBD) simulation tools from the Altair HyperWorks CAE suite to improve the design and performance of your student race car. By using Altair’s academic vehicle library, you can adapt suspension models to represent your existing half or full vehicle and make virtual changes to the design in order to improve stability and manoeuvrability.

MotionSolve for Automotive

MotionSolve – Altair’s multi-body solution is an integrated solution to analyze and improve mechanical system performance. In the automotive industry, MotionSolve is used to design and evaluate new suspension systems, optimize the ride and handling characteristics of vehicles, assess system durability, simulate for low frequency vibration avoidance, design and optimize steering systems, and validate Mechatronics components.

Altair NVH Solutions - Americas ATC 2015 Workshop

This Workshop Presentation on NVH was conducted by Jianmin Guan at the Americas ATC on May 5, 2015. <br><br>This workshop introduced Altair full frequency and multi-physics solutions for solving the most pressing problems in the NVH field. It provided an overview of Altair’s solutions designed to facilitate the best in class NVH design process at automotive OEMs, coupled with real-time demonstrations of key product features. The focus of the workshop is on effective NVH problem resolution.

Radiator Test-Rig Multi-body Simulation - A Benchmark Study

This was a 2010 Americas HTC Presentation given by Girish Mantri from Modine. Modine has been working with Altair Engineering to evaluate Altair Multi-Body Dynamics suite. A Flexible Multi-Body Simulation of a Radiator single axis test rig is carried out to identify the von-mises stresses at critical parts in the assembly. The forces coming onto the connectors (bushings) and the stresses are compared between 2 solvers to check consistency in results. In this presentation, Modine discusses the overall efforts and result correlation between Altair MotionSolve and ADAMS solver.

ChassisSim Showcase Video

2 minute video introduction to ChassisSim for multibody dynamics analysis.

GENOA and HyperWorks Integration for Advance Composite Product Design and Analysis

The increased demand for carbon fiber product in the form of reinforced polymers (CFRP); chopped fiber (elastomer, thermoplastic, thermoset) accelerates the GENOA software integration with Altair hyperwork solutions. The integrated package responds to greater need for more advanced and durable product development in automotive and aerospace industry. The presentation in details discusses to material modeling of composite type, analysis of laser fusion 3D printing, crush and impact of composite, and finally quest for optimization of shape and material including effect of defects, and uncertainties in manufacturing processes. In this regard the GENOA durability and damage tolerance software is integrated with Radios, and Optistruct to evaluate the structural integrity.

Motorsport to Automotive - Crossing the thought barrier. Using ChassisSim solve your vehicle dynamics problems quickly.

This webinar will cover how you can use ChassisSim to quickly construct a high fidelity multibody vehicle model and use the features of ChassisSim to get the answers you need quickly for both motor sport and automotive use.

Partner Spotlight: ChassisSim

Danny Nowlan, the Owner and Director of ChassisSim Technologies, discusses his MBD software, ChassisSim, which specializes in high performance racing vehicles.

CarSim, BikeSim & TruckSim Showcase Video

Introductory video to MBD software from Mechanical Simulation.

Multi Body Dynamics Simulation and Test Correlation of a Glove Box Mechanism using Motion Solve

This was a 2010 Americas HTC Presentation given by Arun Chickmenahalli from International Automotive Components Group. This presentation describes how IAC with the use of multi-body dynamic (MBD) simulations using MotionSolve software has made it possible to study the system and assess feasibility. At IAC, MotionSolve has been implemented and incorporated into the product development cycle to enhance the design efficiency, reduce cost and lead time.

Design of Experiments based optimization and reliability prediction of an Expandable Liner Hanger using HyperStudy

This was an HTC 2011 presentation given by Ganesh Nanaware from Baker Hughes. Development of an expandable liner hanger to meet the demand of higher liner hanging capacity represents an engineering challenge. This presentation summarizes the application of HyperStudy to optimize the liner hanger design to meet a desired hanging capacity and reliability prediction.

The Use of MBD Modelling Techniques in the Design and Development of a Suspension System

This paper describes the use of Multi-body Dynamics (MBD) modelling techniques in the design and development of a suspension system for a novel autonomous vehicle. The general approach and philosophy is described, whereby MBD techniques are used in conjunction with an independent (parametric) whole vehicle handling simulation. This is supplemented with examples, showing how MotionSolve was used (in tandem with CarSim) to develop the suspension elasto-kinematic geometric properties to meet specific cascaded targets, to optimise a weighing strategy, to predict forces under a variety of quasi-static and dynamic loads, and to estimate response to track inputs.

Fluid Structure Interaction (FSI) solutions with RADIOSS - Webinar

The multi-physics solution in RADIOSS enables engineers to study the design and robustness of products by simulating its behavior. Fluid-Structure Interaction (FSI) covers a broad scope of problems in which fluid flow and structural deformation interact and affect one another. With its unique capabilities RADIOSS seamlessly manages the structural, dynamic and fluid-structure interaction (FSI) behavior within a model providing accurate results. <br><br> Run time: 55 minutes

AcuSolve & RADIOSS Solution on FSI Model

This benchmark demonstrates the ability of AcuSolve to capture the effect of impulse load on a profile submerged in channel flow. A P-FSI simulations is performed using the structural output from RADIOSS.

Tanker Truck Sloshing Simulation Using Bi-directionally Coupled CFD and Multi-Body Dynamics Solvers

In this work, the multi-disciplinary problem arising from fluid sloshing within a partially filled tanker truck undergoing lateral acceleration is investigated through the use of multiphysics coupling between a computational fluid dynamics (CFD) solver and a multi-body dynamics (MBD) solver. This application represents a challenging test case for simulation technology within the design of commercial vehicles and is intended to demonstrate a novel approach in the field of computer aided engineering.

mmWave Substrate Lens Antenna for Wire Communications

Wu et. al. [1] proposed designs for both single and multi-beam mmWave circularly polarized substrate lens antennas in 2001. This white paper demonstrates these designs via FEKO modeling.

Multi Model Results Overlay

This enhancement allows users to plot and view results for multiple overlaid models in a single window without having to switch between the models (In previous releases, result plots could only be viewed on current model).

Weld Distortion Optimisation using HyperStudy

Distortion induced in parts due to the cooling of welds complicates automated manufacturing lines in the automotive industry. The resulting deformation leads to additional investment such as end of line machining to correct affected assemblies. Utilising optimisation software a welding pattern can be found which retains the intended performance of a part while reducing the distortion induced from welding. Weld locations may be optimised alongside welding sequence to allow process requirements to be considered within the early design stage. This leads to high performance, low distortion assemblies which can ultimately be manufactured at the lowest possible cost.

UK ATC 2015: Automated Post Processing of Multimodel Optimisation Data

Presentation by Markus Schemat, BMW Group

Delivering World Class Chassis Design

This paper details the extensive use of CAE optimisation technology at ThyssenKrupp Automotive Tallent Chassis Ltd (TKA). There are a number of trends in the automotive business that are presenting great challenges, these include severe cost pressures from OEM’s, platform commonisation and reduced vehicle development cycle time. The use of optimisation is critical for TKA to maintain its competitiveness, this paper deals with more advanced concepts of optimisation by extending into the severely non-linear region of analysis types.

Automotive Modal Testing Support and CAE Correlation Using Altair HyperWorks

To derive the natural frequencies and mode shapes of a given structure, the test Engineer has to decide on excitation positions that will efficiently excite all the modes of the structure in the frequency range of interest. Excitation positions are usually decided upon from experience or trial and error methods which can be time consuming and still not capture all of the modes in the selected frequency range. Using Altair HyperStudy and Radioss (bulk), Pre-test CAE analysis has been carried out to identify effective excitation positions before the commencement of modal testing, thereby significantly reducing pre-test lab time.

Simultaneous Robust and Design Optimization of a Knee Bolster

This paper introduces a practical process to simultaneously optimize the robustness of a design and its performance i.e. finds the plateau rather than the peak. The process is applied to two examples, firstly to a composite cantilever beam and then to the design of an automotive knee bolster system whereby the design is optimized to account for different sized occupants, impact locations, material variation and manufacturing variation.

Optimization of a Family of Supporting Frames Under Multiple Analysis Constraints Using HyperStudy

This was a 2012 Americas HTC Presentation given by Dr. Yimin Zhan from Van-Rob Kirchhoff Automotive. Numerous valuable engineering experiences have been gained at Van-Rob Kirchhoff to improve the design of automotive structures during the product development process. Conventional design activities need constant information exchange between FEA and design activities, through an iterative process, which leads to increased time and manpower consumption. Efforts to enhance the efficiency of such a process and to reduce the product development cycle become a challenge. This presentation will demonstrate the significant role of HyperStudy that Van-Rob Kirchhoff used in the optimization design of a family of supporting frame assemblies under multiple analysis constraints.

Modeling and Analysis of the Battery Packs and Modules in A123 Systems

This was a 2012 Americas HTC Presentation given by Shawn Zhang & Binshan Ye from A123 Systems. In A123 Systems, CAE/FEA tools are widely used to improve the efficiency of the design on battery packs and modules. A123 engineers utilize Altair’s HyperWork Suite for structural FEA including linear and nonlinear statics analysis, modal frequency and random vibration analysis, as well as nonlinear dynamic analysis such as mechanical shock and drop test analysis.

Moldex3D, Structural Analysis, and HyperStudy Integrated in HyperWorks Platform

This was a 2012 Americas HTC Presentation given by Dr. Anthony Yang from CoreTech Systems. In recent years, with the increasing variety, complexity, and precision requirement on plastic products, CAE tools have been widely used for solving product design and manufacturing issues. The structural designs or molding process parameters for products can be optimized efficiently through CAE analyses. However, sometimes it is not efficient to find an optimized set of parameters through traditional CAE analyses. A novel integration between Moldex3D and HyperStudy allows for more quick and efficient parameter optimization which will save time, increase product quality, and increase productivity.

Model Calibration using Altair HyperStudy

This was an Optimization training presentation given by Fatma Kocer at the 2012 Americas HTC. This presentation focuses on Model Calibration using Altair HyperStudy.

Simulating the Suspension Response of a High Performance Sports Car

The use of CAE software tools as part of the design process for mechanical systems in the automotive industry is now commonplace. This paper highlights the use of Altair HyperWorks to assess and then optimize the performance of a McLaren Automotive front suspension system. The tools MotionView and MotionSolve are used to build the model and then carry out initial assessments of kinematics and compliance characteristics. Altair HyperStudy is then used to optimize the position of the geometric hard points and compliant bush rates in order to meet desired suspension targets. The application of this technology to front suspension design enables McLaren Automotive to dramatically reduce development time.

HUMOS - An FE Model for Advanced Safety and Comfort Assessments

Biomechanics modelling is becoming increasingly accepted as a tool for enhance assessment of vehicle safety, in particular in the field of injury assessment and virtual testing. Firstly, a generic RADIOSS model for safety applications (HUMOS2) is presented and applications are demonstrated. Important tools associated with the scaling, and positioning of the model is also described. Secondly, an innovative model for scaling of human organs (individualization) is presented. The method which employs optimization techniques, identifies critical (optimal) anatomical control points which allow for a best scaled model of the HUMOS2 representing an individual. Finally, some remaining challenges for future human models are discussed and solution paths are described.

The Application of Process Automation and Optimisation in the Rapid Development of New Passenger Vehicles at SAIC Motor

As a relatively young automotive company, SAIC Motor has drawn on the expertise of its UK Technical Centre to help in its objective to bring a new range of vehicles to market in an aggressive time frame. CAE has formed an integral part in doing this and the UK technical centre has worked closely with Altair Product Design amongst others to utilise its Engineers’ skills as well as the Hyperworks suite of software. The paper aims to showcase what has been achieved to date, on the Roewe 550 medium car programme - currently on sale in China - and on another current vehicle programme, where processes have been developed further. Several interesting optimisation examples are highlighted in the development of the body structure as well as some key process improvement methodologies which have been jointly developed between SAIC and Altair to streamline the design process.

Optimization of automotive weatherstrip seal

This was an HTC 2011 presentation given by Prasanna RamSagar from Cooper Standard. Automotive weatherstrip seals play a major role in determining door closing efforts, wind-noise and water management. Manufacturing variation in the seals or the environment in which they work plays a big role in seals performance. Because of this optimizing automotive weatherstrip seal’s performance involves lot of man power, computational time and engineer’s expertise. The methodology described in this paper uses Altair’s Hyperstudy to include the size and shape variation and uncertainty into evaluation of seals performance. This technique has been illustrated by optimizing a seal gripper design.

ATCx - Multi-objective Optimization of a Heat Sink for a LED Device using SC/Tetra and HyperStudy

Presentation from Yuya Ando that was given at ATCx West on June 18, 2014

Reducing Weld Distortion by 93% with HyperStudy

Gestamp Tallent Ltd is a world class designer, developer and manufacturer of cutting edge, chassis structural and suspension products, body in white structures, modules and systems for the automotive industry. Gestamp used the BMW MINI front subframe tower to demonstrate the weld distortion optimisation approach. The tower is particularly susceptible to distortion due to its tall and thin dimensions. The objective of this optimisation was to minimise the distortion of the tower measured by the displacement of the top of the tower as the weld sections cool. In order to further investigate weld removal optimisation they chose HyperStudy.

DeWalt Optimizes Power Tools with HyperWorks

The development of modern electric power tools requires special attention to be simultaneously paid to both the efficiency and user comfort of the tool, as well as the robustness and durability of the devices. For the fulfillment of these two groups of attributes, computer-aided simulations using HyperWorks has become central to the development process of Stanley Black & Decker Deutschland GmbH.

Optimizing Cooling Passages in Turbine Blades

Turbine blades have internal passages that provide cooling during operation in a high temperature engine. The design of the cooling passages is critical to achieve near uniform temperature of the blade during operation. The temperature of the blade is dependent on the thermal properties of the blade material as well as the fluid dynamics of the air circulating in the cooling passages. Computational optimization methods have successfully been applied to design lighter and more efficient structures for many aerospace structures. An extension of these techniques is now applied to guiding the thermal design of a turbine blade by designing the optimal cooling passage layout. Optimization methods will be applied to determine the optimum pattern of the cooling passages and then to optimize the size of the individual cooling passages. The goal is to produce a more thermally efficient turbine blade design that will produce blades with longer lives and better performance.

Optimization Drive Design - A Desktop Engineering Sponsored Report

Optimize every stage of product development with an integrated workflow that democratizes simulation and analysis. In this Desktop Engineering sponsored report Altair's vision for product optimization is analyzed

Using RADIOSS, HyperStudy and MultiMech for Improved Composite Design

The purpose of this webinar is to demonstrate how you can use the composite microstructure analysis tools of MultiMech to enhance the existing functionality of RADIOSS , specifically when dealing with the simulation of complex composite parts.

Integration between Moldex3D and HyperStudy Improving Part Quality for Injection Molding in the Automotive Industry

In this webinar, we will present step-by-step about how to integrate Moldex3D with HyperStudy to perform the DOE analysis to optimize the injection molding process. Industrial cases will be presented to showcase the advantages of the integrate analysis.

Development of Reliability Analysis and Multidisciplinary Design Optimization (RAMDO) Software

In manufacturing industry and DoD, developing and producing optimized and reliable products is the primary goal for success of business, reduction of warranty cost, and success of military operations. As the CAD and CAE tools are advancing, the simulation-based design process is often used to obtain an optimum design, prior to prototype development, to reduce the product development cost. However, a design that is deterministically optimized without inclusion of input uncertainty will be most likely only 50% reliable.

MotionSolve for Heavy Industry

MotionSolve by Altair delivers a multi-body, integrated solution to analyze and improve mechanical system performance. MotionSolve enables accurate modeling of the challenging complexity of heavy machinery including large operating loads on structural components, controls with hydraulic actuation systems and detailed hydraulic circuit descriptions, tire behavior, tire-soil interaction, and driver behavior.

Introduction to HyperView

Altair HyperView is a complete post-processing and visualization environment for finite element analysis, multi-body system simulation, digital video, and engineering data. HyperView combines advanced animation and XY plotting features with window synching to enhance results visualization.

CFD and More with Acusolve and HyperWorks

This was a training presentation given at the 2012 Americas HTC. This presentation focuses on the use of HyperWorks tools for CFD applications. Basic topics involve the meshing and set-up of a simple fluid flow application. Advanced topics focus on the set-up, simulation, and post-processing of multi-physics applications.

Composite Modeling with FiberSim

This was a 2012 Americas HTC Composites training presentation given by Shan Nageswaran. This presentation focuses on Zone-based vs. Ply-based HyperWorks composite modeling approach, CATIA - CPD based composite modeling, Fibersim Interface, Conventional shell vs. Continuum shell / solid composite modeling, and optimization and future HyperWorks enhancements. HyperWorks tips for Ply based-PCOMPP and Zone based (PCOMP/PCOMPG) modeling for Multi laminate structures are also covered.

Advanced Weld Modeling for Clean Energy Technologies

This was an HTC 2011 presentation given by Wei Zhang from Oak Ridge National Laboratory. This presentation gives a research overview of integrated multi-physics weld modeling at the Oak Ridge National Laboratory. High-quality hexagonal elements are desirable in weld modeling which is highly nonlinear. Example applications of Altair HyperMesh for high-quality meshing of complex geometries containing welds are illustrated.

Advanced Features for External Automotive Aerodynamics Using AcuSolve

Watch this 45-minute webinar to learn more on the use of advanced features for solving “on road” external automotive aerodynamics with Altair’s CFD solver AcuSolve. The webinar will focus on the analysis of external aerodynamics for passenger and racing vehicles while performing turning maneuvers. AcuSolve’s mesh motion capabilities, along with real time cosimulation with Altair’s multi-body dynamics solver, MotionSolve give engineers the ability to better simulate actual road conditions.

Video Overlay Enhancements

Significant improvements have been made to Video Overlay. A clean overlay of a Model and Video/Image can be achieved by providing the properties of the camera used to capture the image or by a multi-point alignment method.

Fluid-Structure Interaction Simulation with AcuSolve

In this webinar, attendees will be exposed to the fluid-structure interaction (FSI) simulation capabilities of AcuSolve, Altair's finite element based CFD solver. Attendees will learn about the different types of FSI simulations that are supported by AcuSolve and how these technologies work in conjunction with other HyperWorks tools to provide a powerful solution for multiphysics applications.<br><br> <i>This is a recording of the webinar that took place on August 8, 2012 </i>

Workshop25 - Riser VIV

This tutorial shows how to set up a Practical FSI simulation. A flexible Riser is modeled

APA + HyperWorks for Multiphysics

Overview of multiphysics solutions available via the Altair Partner Alliance.

Design Optimization of Axles using Inspire and OptiStruct

Use Inspire to form optimization from the packaging space, performance loading and manufacturing constraints to design an axle close to production ready design. The model setup requires careful setting of axle internal component design and oil flow consideration. Since Inspire does not provide weighting for different load cases, the author was able to gain from trial run to determine the balanced load application, mass target and meshing size requirement to obtain realistic design.

FEKO: RF Design and Safety for Biotechnology

Systems for the healthcare industry are at the forefront of technology development. These drive the growing trend of ubiquitous computing - where computers are embedded and an invisible part of our lives. Applications include remote patient monitoring, drug delivery and sophisticated imaging systems like magnetic resonance imaging (MRI).

FEKO: RF Design and Safety of MRI Systems

Electromagnetic simulation software has become an indispensable tool in the development and analysis of magnetic resonance imaging (MRI) systems.

ATCx - Inspire 2014 Overview

Presentation of "Inspire 2014 Overview." This was given by Russell Vernon, Application Engineer, solidThinking, at ATCx West on June 18, 2014.

Shanghai Arts and Crafts Factory

The Shanghai Arts and Crafts Factory utilized a process incorporating solidThinking Evolve to generate ideal designs and renderings for parade floats.

JSOL Corporation Partner Spotlight

Yusaku Suzuki, the Marketing Manager of the JMAG Division at JSOL Corporation, discusses the electromechanical design and analysis tool, JMAG.

Design Profit Installation Guide

Guide for installing Design Profit from Munro & Associates

OntoNet Showcase Video

2 minute video introduction to complexity management software, OntoNet from Ontonix

Partner Spotlight: OntoNet

Discussion about Complexity Management and OntoNet with with President and Founder of Ontonix.

Automotive Closures Webinar

Automotive closures are a focus for innovation and vehicle weight reduction. Effectively utilizing simulation enables companies to reduce costs, improve efficiency and reduce risk while addressing these challenges. This webinar will discuss how CAE can assist engineers in finding solutions for closure design issues.

Structural Innovation Takes Shape

Structural optimization plays a key role enabling Skidmore, Owings & Merrill, LLP to create buildings with unique shapes and aesthetic values.<br><br> This article was featured in the Spring/Summer 2009 issue of <i>Concept to Reality</i>. To subscribe to our <b>free</b> magazine, please <a href="http://www.altairhyperworks.com/MagazineFreeSubscription.aspx">click here</a>.

Optimization Methods Land Results in ExoMars Project

Sophisticated simulation tools enable aerospace engineers to study the feasibility of airbag landing systems.

Optimizing Aircraft Structures

Optimization technology and methods for the innovative design of efficient civilian and military aircraft.

Quality Driven by CAE

Advanced CAE tools enable companies to design quality into their products.

Design Loop with CSC and CCC from Impact Design

Cross Section Creator enriches the functionalities and capabilities of Crash Cad Calculate, provides the possibility of fast and easy extraction of Cross Sections from a mesh model and consequently closes the optimization and design loop. This short tutorial explains how.

HyperWorks 12.0 Rollout Webinar Series Multi-body Solutions MotionSolve



Topology Optimization of PMH Structures

This was an HTC 2011 presentation given by Vasant Pednekar from Lanxess Corporation. Design time, a major component of product design, is vastly reduced by application of computational FEA. However, optimizing a product for light weight design while conforming to its structural requirements in shortest possible time is always a Herculean task. This presentation highlights how the application of Optistruct methods in different stages of product design yields unorthodox design patterns pertaining to load cases analyzed leading to efficient design in lesser time.

Automation of Engineering Analysis and Design Process in Subsea Industry

Automation of Engineering Analysis and Design Process in Subsea Industry

Peter Macapia, LabDORA

Architect Peter Macapia is exploring new frontiers in architectural design; a different way of looking at the design of buildings thanks to solidThinking Inspire.

Increasing the Velocity of Product Development

Applying simulation technology to industrial design accelerates the generation of design concepts that are exciting, feasible, desirable and profitable.

Page: 1  2   3   4  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.