| Login


Resource Library

Keyword
GO
Categories










Industries














614 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • Portuguese
  • Spanish
Transmission Modeling and Simulation with MapleSim

Maplesoft has developed a MapleSim library of components, transmission sub-assemblies, and complete powertrain examples that show the use of these components in driveline applications. Built with guidance from several transmission manufacturers, this MapleSim library allows you to mix the best of physical models and empirical data to maximize model fidelity, optimize your designs, and improve overall vehicle fuel-efficiency.

CoDA Technical Demo

Short demo of CoDA for component and composite design analysis.

Applications of Advanced Composite Simulation and Design Optimization

Usage of fiber reinforced composite material entered an new era when leading aircraft OEMs took an unprecedented step to design and manufacture essentially full composite airframe for commercial airliners. Composite structures offer unmatched design potential as the laminate material properties can be tailored almost continuously throughout the structure. However, this increased design freedom also brings new challenges for the design process and software. Moreover, as a relatively new material, composite behaviors are more complex and less fully understood by design engineers. Therefore, reliable simulation for highly complex events like bird strike and ditching can play an important role in shortening the product design cycle. This paper showcases two area of CAE tools for composite applications. On advanced simulation, bird strike simulation with Altair RADIOSS [1] is demonstrated on an aircraft underbelly fairing. On design optimization, an airplane wing structure is designed using an innovative composite optimization process implemented in Altair OptiStruct [1-3]. OptiStruct has seen increasing adoption among aerospace OEMs, as demonstrated in the Bombardier application process described in this paper.

HyperWorks provides flexibility and agility to development processes of Engineering Services Provider Beta Epsilon

Beta Epsilon designs racing cars and offers engineering. Beta Epsilon offers component and vehicle meshing, FEA analysis of metal and composite components, crash test simulation, optimization, and CFD simulation. Beta Epsilon uses HyperMesh, OptiStruct, HyperCrash, RADIOSS, AcuSolve, HyperView, and Virtual Wind Tunnel. With HyperWorks, Beta Epsilon could improve the quality of its products and extend its range of services.

A Comprehensive Process for Composite Design Optimisation

Composite structures offer unmatched design potential as laminate material properties can be tailored almost continuously throughout the structure. Moreover, composite laminate can be manufactured to fit the ideal shape of a structure for aerodynamic and other performances. However, this increased design freedom also brings new challenges for the design process and software. It is shown in this paper that optimization technology is well suited to exploit the potentials that composite materials offer.

The Micromechanics Approach and Multiscale Modeling of Composites

Material modeling remains one of the interesting challenges in composites design. The APA's technical director discusses this topic and the solutions available from Altair.

Workshop15 - Burner

This tutorial utilizes species transport to model the fuel and air mixing process of a burner.

MotionSolve for Automotive

MotionSolve – Altair’s multi-body solution is an integrated solution to analyze and improve mechanical system performance. In the automotive industry, MotionSolve is used to design and evaluate new suspension systems, optimize the ride and handling characteristics of vehicles, assess system durability, simulate for low frequency vibration avoidance, design and optimize steering systems, and validate Mechatronics components.

MCQ-Composites Datasheet

Learn the benefits of using MCQ-Composites for material property prediction.

CoDA Product Datasheet

Component Design Analysis (CoDA) Datasheet from Anaglyph

MCQ and A-B-Basis Allowables

A- and B-basis allowable strength values are essential for reducing risk in aircraft structural components made from fiber reinforced polymer composite materials. Risk reduction is achieved by lowering the probability of failure of critical aircraft structures through the use of A- and B-basis design values. Learn how MCQ can help achieve this.

Designing Composite Components for Automotive

Watch this 45-minute webinar recording to learn the latest advancements in composites design and optimization of carbon fiber composites and mixed material structures in the automotive industry.<br><br> Capabilities included in Altair HyperWorks as well as third party products available through the Altair Partner Alliance will be illustrated, showing real life examples of application.

Composite Material Analysis using StressCheck

Topics covered include: Composite materials, one of the most demanding analysis categories, and multiscale opportunities that StressCheck provides.

Topology Optimisation Used to Achieve Frequency Targets of an Engine Bracket

Topology optimisation technology is becoming increasingly used in the design process of automotive components. This technology can be applied very effectively to simultaneously achieve static compliance and frequency targets for structural designs. The paper provides an industry perspective on how this technology is applied to a production bracket and the important role the designer and engineer play in converting the optimised material layout into a component which can be manufactured. It is demonstrated that the combination of topology optimisation and design knowledge can provide a design solution which could not otherwise have been achieved.

ESAComp supporting the composite design process in the Automotive Industry

With the automotive industry more and more exploring the capabilities of composite materials, engineers face new challenges throughout the design process. For layered composite structures ESAComp is the right software to help you. This webinar will provide an overview on how to use ESAComp to efficiently tackle daily tasks concerning laminate design towards stiffness or strength criteria, structural elements (e.g. panels), data exchange with HyperWorks and integration into a workflow for optimization.

Delivering Enhanced Workflow for Advanced Sizing of Composite Structures

Challenges of composite structures design will be presented along with how these can be tackled using the ESAComp-HyperWorks integration, which extends existing composite specific post-processing capabilities of HyperWorks.

Composites Analysis and Optimization

This webinar explores and demonstrates the comprehensive capabilities of HyperWorks to analyze, design, and optimize composite laminated composite structures.

Driving accurate engineering decisions through comprehensive material knowledge with Total Materia

Total Materia provides the world’s most comprehensive material properties database covering over 250,000 metals, plastics, composites and a range of other non-metallic materials. This webinar is designed to help demonstrate how having the right information available at the right time can not only save hours and even days of sourcing but improve information accuracy and help optimize early critical design decisions.

StressCheck Solutions for the Modern Aerospace Industry

StressCheck has become the “Go-To” tool in the aerospace industry for analysis of critical components, sub-assemblies and assemblies in the areas of detailed stress analysis, fracture mechanics, composite materials and many other applications exhibiting challenging detailed linear or non-linear behavior.

Using HyperStudy and MultiMech for Advanced Composite Material Design

The purpose of this webinar is to demonstrate how sensitivity analysis can be used to uncover the “important” features of a composite system, so that material designers can intelligently work to extract (and improve on) the relevant properties. In this webinar we will be using the design exploration techniques found in Altair HyperStudy to perform a multiscale sensitivity analysis on the non-linear behavior of a chopped-fiber composite microstructure (Global Scale) with an embedded nano-silica matrix (Local Scale).

ESAComp Datasheet

ESAComp Software for composites design data sheet.

Mahindra Two Wheelers Success Story

Two-Wheeler Designer-Manufacturer Cuts New Component Time to Market and Optimizes Component Design with the Altair Partner Alliance

SwiftComp - Get the right results, right away!

Drawing on cutting-edge university research, SwiftCompâ„¢ provides an efficient yet accurate tool for computational modeling of composite materials and structures. It can be used either independently as a tool for virtual testing of composites or as a plugin to power conventional FEA codes with high-fidelity modeling for composites.

Materials Property Data for Simulation Webinar - release of GRANTA MI:Materials Gateway™

Watch this 45-minutes webinar recording to find out how the new MI:Materials Gateway for HyperMesh application provides access to validated CAE materials models from directly within HyperMesh. See how to get the data you need, fast and error-free. Understand how and why leading engineering enterprises manage their materials information to ensure delivery of traceable, high quality information for simulation. GRANTA MI:Materials Gateway both provides access to this managed proprietary data and to a unique, comprehensive library of reference data on metals, plastics, composites, compiled over the 21 years since Granta’s spin-out from the University of Cambridge.

Using AlphaCell for quick & accurate sound package design in Heavy Industry

AlphaCell is an accurate solution for predicting the vibro-acoustic performances of sound packages including e.g. poro-elastic materials, perforated plates, visco-elastic materials, studded structures with inner filling, composite materials or materials with embedded inclusions.

Simultaneous Robust and Design Optimization of a Knee Bolster

This paper introduces a practical process to simultaneously optimize the robustness of a design and its performance i.e. finds the plateau rather than the peak. The process is applied to two examples, firstly to a composite cantilever beam and then to the design of an automotive knee bolster system whereby the design is optimized to account for different sized occupants, impact locations, material variation and manufacturing variation.

HyperForm Sheet Metal Forming Solution Provides Yield Improvement of Wheel Housing and Wheel Arch

Using Altair HyperForm, Mark Auto was able to significantly improve the material utilization for their existing production dies. Mark Auto re-designed two existing dies for wheel arch an wheel housing and was able to dramatically reduce material scrap with minimum rework in their tools while not compromising on component quality.

Componeering Partner Spotlight

Discussion with Componeering's Markku Palanterä and André Mönicke highlighting the benefits of the composites modeling software, ESAComp.

Topology Optimisation of an Aerospace Part to be Produced by Additive Layer Manufacturing (ALM)

OptiStruct helped EADS achieve significant weight savings in the design of ALM (additive Layer Manufacturing) components.

Material Characterization and Qualification (MCQ) and MCQ-Composites

Introduction to GENOA's Material Qualification and Characterization (MCQ) family of modules representing a set of tools designed to simplify, verify and validate material models in order to produce accurate, reliable computational analyses.

UK ATC 2015: How Analysis & Optimisation Help Meet the Time Consstraints in F1

Presentation by Simon Gardner, Sahara Force India

Euro-Pro Embraces Simulation-Driven Design with Altair HyperWorks

Euro-Pro, maker of Ninja blenders and Shark vacuums, has embraced simulation-driven design to reduce physical tests and improve product performance and durability. HyperWorks solvers (OptiStruct, RADIOSS and AcuSolve) are used across the board via Altair’s HPC cloud infrastructure

HyperMesh + Key to Metals Integration Demo

Short demonstration of how the new integration between HyperMesh and Key to Metals works.

Data discovery and how to seamlessly search, identify, and move material properties data using Total Materia and HyperMesh

An insightful introduction to Total Materia and its recent integration into Altair’s HyperMesh which allows access to the world’s most comprehensive materials database direct from the HyperMesh environment. This webinar will put data discovery in the context of the workflow and demonstrate how to search, identify and move material properties data seamlessly between Total Materia and the material card.

Implementing CAE into the Design Process for Composite Tennis Racquets at Wilson Sporting Goods

Wilson Labs, the innovation hub at Wilson Sporting Goods, leveraged OptiStruct and Altair ProductDesign for composites finite element analysis to reduce design cycle time and enhance product value.

ESAComp + HyperWorks Datasheet

This documents outlines the workflow for using ESAComp within the HyperWorks composite design process and provides an overview of ESAComp-HyperWorks interface capabilities.

Applying Optimization Technology to Drive Design of a 100-Meter Composite Wind Turbine Blade

This presentation demonstrates how numerical optimization can be applied using OptiStruct to aid in the design development of a 100-meter composite wind turbine blade.

HyperWorks helps to improve development processes at F.S. Fehrer Automotive GmbH

F.S. Fehrer Automotive GmbH in Kitzingen is using the HyperWorks Suite to develop seat parts, form cushions and complete vehicle interior systems. The engineers use HyperWorks and especially RADIOSS for static and modal analysis. The seat of a vehicle is the direct and closest connection of the passenger with the automobile. Design and seating comfort play an important role in personalizing the vehicle model and convey the feeling of quality to the passenger. In addition, safety and variability are vital aspects for the development of interior parts of a vehicle.

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm

This paper details the application of a specialised genetic algorithm to reduce the mass of a laminated composite wing rib. The genetic algorithm has been customised specifically to optimise the performance of polymer-laminated composites. The technology allows the mass to be minimized by the removal or addition of plies of various discrete orientations whilst satisfying the structural intent of the component. For the rib structure assessed, the structural constraints consist of limits placed on the displacement, stress (i.e. ply failure index) and buckling behaviour.

CFD model for active mixing in large potable water storage tank

This was an HTC 2011 presentation given by Robin Giguere from PAX Water Technologies. PAX Water Technologies has developed and deployed a small submersible mixer with a unique impeller design that homogenizes water temperature and composition in large potable water storage tanks. A comparison of the AcuSolve solutions of active mixing with experimental data at laboratory scale and at full scale will be discussed.

ChassisSim Case Study: Suspension Geometry Design

This case study describes a method to short circuit the suspension geometry design of a vehicle using the motorsport simulation package ChassisSim.

HyperWorks 13.0 Lightweight Design and Composites

Altair is well-known for its expertise in designing lightweight and composites structures. In this webinar some of the new and enhanced features developed in HyperWorks 13.0 for composites modeling and visualization will be presented along with new material laws and failure criteria for laminated composites and polymers. New composites forming functionalities in HyperForm and the HyperMesh drape estimator will also be shown.

Forming Simulation of Woven Composite Fibers and Its Influence on Crash Performance

The automotive industry, in its constant quest for weight reduction, is increasingly considering composite materials as a substitute for sheet metal components to meet future fuel consumption standards. However, composite forming processes are expensive and difficult to control because of the complexity of the material behavior with fiber and matrix layers or plies and its dependency on many parameters, such as non-linearity of tensile stiffness, effect of shear rate, temperature and friction. Hence, numerical simulation could be a viable approach to predict material behavior during composite forming. The objective of this study is to highlight capabilities of RADIOSS™ to simulate forming simulation of composite plies made from woven fibers, each ply modeled as a layer of woven fibers along two directions of anisotropy, warp and weft. For validation the well-known double dome model published in NUMISHEET’05 proceedings is used. The compared result is the shear angle after stamping that is, the final angle between warp and weft fibers, at several prescribed points on the ply. The variation of this angle has a strong impact on material characteristics which severely deteriorates when a critical value is reached. Hence, a study on crash simulations is performed, after mapping fibers angles from stamping simulation.

Composite Optimisation of a Formula One Front Wing

This paper will show the application of a 3-stage approach to designing the optimum composite structure for a front wing on a Formula One car using Altair OptiStruct 9.0 Continual development of aerodynamic components is normal practice in the world of Formula One and the time taken to respond is paramount if a team is to be competitive.

Performance Improvement of Recently Updated RADIOSS FE Dummy Models

This was a 2012 Americas HTC Presentation given by Nishant Balwan from Humanetics. With both versions of full FE dummy model and simplified “express” dummy model being introduced to vehicle design applications, the need to improve dummy models predictability is sought by taking into account of accuracy, cpu cost, and efficiency. The Hybrid-III family dummy models have been updated according to users input and application needs. This paper presents the latest modifications and performance improvement of H305 and H350 dummy models on component level as well as full dummy assembly level.

Significant Weight Reduction by Using Topology Optimization in Volkswagen Design Development

Using Altair’s topology and topography optimization as an integrated part of their design process, Volkswagen is able to reduce mass of engine components by 20% and more

Advanced Design, Analysis and Optimization of Composite Structures

With stricter requirements on performance and weight, in many cases, composite materials are now becoming the natural choice of designers and engineers given their desirable characteristics such as low weight and high strength. Material properties can be tuned so they are directional – stiffer in one direction while compliant in another for example.

Scania

Scania uses Inspire to speed up its design and development process to produce lighter and more efficient components.

Altair HyperXtrude 2015 Brings Extrusion Simulation to the Shop Floor

Extrusion companies today must create a more extensive mix of complex profiles in shorter product-development cycles. At the same time, they seek to reduce production costs. With HyperXtrude 2015, engineers can analyze material flow and heat transfer inside a die during extrusion to validate die designs and thereby reduce or eliminate costly and time-consuming trials. This complimentary 45 minute webinar will help you learn how HyperXtrude 2015 and its intuitive interface can help streamlining your workflow for extrusion die design and manufacturing.

ESAComp for Automotive Use Case

ESAComp is software for analysis and design of composites. Its scope ranges from conceptual and preliminary design of layered composite structures to advanced analyses that are applicable to the final verification of a design.

RUAG Space Streamlines Composite Analysis with Improved Data Workflow

RUAG Space combines the power of the Altair HyperWorks Suite with the advanced composite failure analysis methods from ESAComp to improve their efficiency and composite modeling process.

Partner Spotlight: AlphaSTAR Corporation

Interview with the AlphaSTAR CTO, Dr. Frank Abdi, about the challenges addressed by composite analysis software GENOA and MCQ-Composites

Improving Heating Boiler Acoustics at Viessmann: OptiStruct for Bead Pattern Optimization

Altair OptiStruct can be used to generate and optimize bead patterns for the effective design of sheet metal components. By using OptiStruct’s topography and shape optimization methods, sheet thicknesses can be reduced significantly, leading to both reduced material and a lower overall cost.

Designing All-Terrain Vehicle Frames Using Topological Optimization

Upfront concept design optimization on a all terrain vehicle frame resulted in a 9% mass reduction. Using Design of Experiment (DOE) methods, peak accelerations during crash decreased by 22%.

Optimization: Taking a Different Tack

A slick design and the use of new materials make the Fila sailboat a force to contend with on the competitive boat racing circuit.

Seeing Steel in a New Light

Advanced high-strength steels have emerged as one of the most sophisticated materials available for highly engineered product design.

Optimising Vehicle Dynamics for Student Racing with Altair University

You will learn how to use multi-body dynamics (MBD) simulation tools from the Altair HyperWorks CAE suite to improve the design and performance of your student race car. By using Altair’s academic vehicle library, you can adapt suspension models to represent your existing half or full vehicle and make virtual changes to the design in order to improve stability and manoeuvrability.

Gasoline engine development using LOGEengine

LOGEengine is an integrated simulation method for the prediction and optimization of engine in-cylinder performance parameters and studies of fuel effects on exhaust emissions. It contains a stochastic reactor model for 0D modelling (0d-SRM) with local effects in gas-phase space, direct fuel injection, temperature and species concentrations as random variables, detailed chemical kinetics, prediction of engine exhaust emissions (Soot, NOx, uHC), turbulence consideration via mixing modeling and self-calibration. LOGEengine can also model soot formation for diesel engines using detailed kinetic soot models, with gas phase chemistry, soot particle inception, condensation, coagulation, surface growth and oxidation. It can run equivalence ratio - Temperature (f-T ) diagnostics maps for analysis of regimes of emission formation in diesel engines using zero-dimensional methods with low CPU cost. It analyses local inhomogeneities in gas-phase space for species concentration and temperature due to mixing, fuel injection and heat transfer to cylinder walls, and their influence on soot and NOx formation from different fuels and in individual combustion cycles.

Aerospace Defense Stress Analysis with StressCheck

Over the past 25 years, ESRD has pioneered and developed an advanced FEA numerical simulation technology that is well-suited for detailed stress analysis of complex parts associated with the aerospace defense industry.

MCQ-Chopped Newsletter

About how MCQ-Chopped relates to various areas of composite modeling.

FEKO: Electromagnetic Environmental Effects on Aircraft with Composite Materials

FEKO is well-suited for simulations involving anisotropic multi-layer carbon-fiber-reinforced composite materials.

Crash Material Model Parameter Generation and Validation for Ductile Plastics

The Matereality Workgroup Material DatabasePro solution enabled through the Altair Partner Alliance allows Altair HyperWorks users access to browser-based software to build and maintain productivity enhancing material databases on the same platform that they use for product design. The integration of materials data with CAE tools strengthens the material core of their group’s PLM.

MultiMechanics Datasheet

General information about composites software from MultiMechanics.

MultiMech2014 Release Notes

Latest updates, additions and information about MultiMech2014.

Total Materia + Altair Partner Alliance Flyer

Highlights of how the Total Materia offering interacts within the APA.

ATCx - Inspire 2014 Overview

Presentation of "Inspire 2014 Overview." This was given by Russell Vernon, Application Engineer, solidThinking, at ATCx West on June 18, 2014.

Composite Modeling with FiberSim

This was a 2012 Americas HTC Composites training presentation given by Shan Nageswaran. This presentation focuses on Zone-based vs. Ply-based HyperWorks composite modeling approach, CATIA - CPD based composite modeling, Fibersim Interface, Conventional shell vs. Continuum shell / solid composite modeling, and optimization and future HyperWorks enhancements. HyperWorks tips for Ply based-PCOMPP and Zone based (PCOMP/PCOMPG) modeling for Multi laminate structures are also covered.

Multiscale Design Systems (MDS) for the Composites Industry

Unlike competing multiscale products, MDS is based on the scale-separation-free stochastic reduced order multiscale method, resulting in unmatched combination of practicality, mathematical rigor, verifiability and versatility.

Partner Spotlight: Sentient Science

Wesley Thomas, the Business Development Manager at Sentient Science, discusses DigitalClone Component for fatigue analysis of rotating components.

Introduction to CAEfatigue VIBRATION: Random Response + Fatigue in the Frequency Domain

Frequency domain analysis is the method of choice for dynamic analysts and CAEfatigue VIBRATION will act like a turbo charger for such methods. This makes it a valuable new tool for durability estimates on large automotive systems and fatigue life calculations for aerospace systems where mixed random and deterministic loads are specified.

GENOA and HyperWorks Integration for Advance Composite Product Design and Analysis

The increased demand for carbon fiber product in the form of reinforced polymers (CFRP); chopped fiber (elastomer, thermoplastic, thermoset) accelerates the GENOA software integration with Altair hyperwork solutions. The integrated package responds to greater need for more advanced and durable product development in automotive and aerospace industry. The presentation in details discusses to material modeling of composite type, analysis of laser fusion 3D printing, crush and impact of composite, and finally quest for optimization of shape and material including effect of defects, and uncertainties in manufacturing processes. In this regard the GENOA durability and damage tolerance software is integrated with Radios, and Optistruct to evaluate the structural integrity.

PBS Professional at Toulouse Genopole

The Toulouse Midi-Pyrénées Genopole, a research program set up in 1999 in southern France by the French Minister of Research, is part of the massive French research initiative known as the National Genopole Network. The genopole name is metaphoric. It brings to mind a magnetic pole that attracts researchers and entrepreneurs to the potential of genomic research. And it is working: the initiative has drawn together, at seven locations across France, a symbiotic mix of public laboratories, biotech companies, and educational institutions. The genopoles stimulate genomics research and may provide an incubator for biotech enterprises.

Partner Spotlight: MultiMechanics

Interview with Leandro Castro, Founder of MultiMechanics, and the APA Team about composites software, MultiMech.

SwiftComp MicroMechanics and Altair Partner Alliance Brochure

Brochure containing valuable information about the composites software and its relationship with the APA.

StressCheck Composites Analysis Product Brief

StressCheck data sheet highlighting its functionality in the areas of composite structure analysis and bonded joints

Bird strike on an aeroplane underbelly fairing

What is the DIGIMAT advantage for composites?

MultiMechanics Showcase Video

2 minute video introduction to MultiMech for Composites Modeling & Analysis.

GENOA Technical Brief

Validation of burst pressure analysis and manufacturing techniques for composite overwrapped pressure vessels.

ESAComp Showcase Video

2 minute video introduction to composites software, ESAComp, from Componeering

Composite Plate Optimization with Practical Design Constraints

Composite free size optimization has the potential to generate weight savings and performance improvements for many applications of composite structures. Key to realizing such improvements is practical application of design and manufacturing constraints in the optimization model.

Partner Spotlight: CEDREM

Edouard Ferry, Engineer at CEDREM, discusses composites software, KTEX Family, available through the Altair Partner Alliance.

Climbing the Winner’s Podium with HyperWorks

HyperWorks allows for the option to increase the stiffness of the wheel shell through the use of OptiStruct. By applying HyperWorks to their composite design and development process the team was able to increase the stiffness of the chosen components by 10 percent while learning how to do a structural layout of carbon fiber composites.

Progressive Failure Analysis on Aircraft Door Surround During Ground Service Equipment Impact

Digimat helps address the changes coming along with the replacement of metallic structures with composite structures.

Design and optimization of a high performance C-Class catamaran with HyperWorks

Reprint of the article published on composite solutions magazine 2/2016.

KTex Family Top Use Cases

Presentation introducing a few of the top use cases for the composites software, KTex Family.

Zig Zag Crack Growth Analysis and Optimization in Composite Materials

AlphaSTAR's 2014 CAMX presentation showcasing GENOA and MCQ-Composites.

LAP Technical Demo

Short technical demonstration of LAP for layered composite analysis.

Introduction to ChassisSim

Learn about the multi body vehicle dynamics offerings available through ChassisSim.

How does a playing field get into the stadium? DSHplus, solidThinking Activate and FMI help!

As in real life with hardware, models of hydraulics and control can be delivered by different suppliers, and have to be put together for a system simulation. This webinar illustrates coupling, through the FMI standard, between hydraulics system simulation in DSHplus and control system design & simulation in solidThinking Activate. Please note: You will need to login to Altair Connect to view this recording.

Maplesoft HEV Datasheet

Overview of Maple and MapleSim's capabilities for electric and hybrid electric vehicles.

Matereality Tip: Create CAE Master Material Files for use in HyperWorks

Quick guide to creating material files in Matereality Workgroup Material DatabasePro that are compatible with HyperWorks.

Vehicle Airborne Noise Analysis Using the Energy Finite Element Method

EFEA is used to evaluate the exterior acoustic loading in a vehicle.

Vehicle Durability Workshop

This was a training presentation given by Keshav Sundaresh at the 2012 Americas HTC. This presentation covers how industries are currently applying CAE to analyze vehicle durability, how different groups coordinate their efforts to assess the fatigue life of components, and how Altair HyperWorks can help you with virtual durability analysis.

The Use of MBD Modelling Techniques in the Design and Development of a Suspension System

This paper describes the use of Multi-body Dynamics (MBD) modelling techniques in the design and development of a suspension system for a novel autonomous vehicle. The general approach and philosophy is described, whereby MBD techniques are used in conjunction with an independent (parametric) whole vehicle handling simulation. This is supplemented with examples, showing how MotionSolve was used (in tandem with CarSim) to develop the suspension elasto-kinematic geometric properties to meet specific cascaded targets, to optimise a weighing strategy, to predict forces under a variety of quasi-static and dynamic loads, and to estimate response to track inputs.

Ford Focus STREET: Getting Real in Six Weeks

Technology partners collaborate in style to deliver a specialty vehicle based on the Ford Focus platform.

HyperWorks at Changchun Railway Vehicle Co., Ltd.: Accelerating Design and Analysis of High-Speed Railcars

Asia's largest railway vehicle manufacturer, Changchun Railway Vehicle Co., Ltd. (CRC), was looking for ways to increase development efficiency through streamlined CAE processes. By implementing HyperWorks, Altair's engineering framework for product design, CRC was able to reduce modeling cycle time by up to 50 percent. In addition, simulations were more accurate as a result of better model quality.

Targeting Composite Wing Performance – Optimising the Composite Lay-Up Design

This paper shows how Altair OptiStruct, part of the HyperWorks suite, is used to provide a complete solution when designing with laminated composites, taking the design through concept stages to producing the final ply lay-up sequence. The technology is applied to the design of a laminated wing cover to produce a mass optimised design which meets the requested structural targets.

A Multifunctional Aerospace Smart Skin Emerges from Computational Models and Physical Experiments

The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, government agencies, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into “smart” vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ.

Introduction to KTex Family by CEDREM

KTex Family is a set of tools dedicated to composite materials to represent them precisely at the scale of the yarns and take into account the impact of manufacturing processes on their mechanical properties.

Page: 1  2   3   4   5   6   7  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.