| Login

Resource Library



535 Results
Filter by:
Slide for More Clear All Apply

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't


  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • Portuguese
  • Spanish
MultiMechanics Showcase Video

2 minute video introduction to MultiMech for Composites Modeling & Analysis.

RUAG Space Streamlines Composite Analysis with Improved Data Workflow

RUAG Space combines the power of the Altair HyperWorks Suite with the advanced composite failure analysis methods from ESAComp to improve their efficiency and composite modeling process.

AnalySwift Introductory Presentation

Learn basic benefits and applications of SwiftComp Micromechanics from AnalySwift

SwiftComp Micromechanics Manual

Manual for use with SwiftComp Micromechanics from AnalySwift

SwiftComp Micromechanics Brochure

Informational brochure about SwiftComp Micromechanics from AnalySwift

Multi-Scale Progressive Fatigue/Failure Analysis Using GENOA

A quick overview on how GENOA models Multi-Scale Progressive Fatigue/Failure Analysis in Composite Structure made of continuous fiber-reinforced polymer matrix (CFRP).

Partner Spotlight: AlphaSTAR Corporation

Interview with the AlphaSTAR CTO, Dr. Frank Abdi, about the challenges addressed by composite analysis software GENOA and MCQ-Composites

GENOA Technical Brief

Validation of burst pressure analysis and manufacturing techniques for composite overwrapped pressure vessels.

MCQ-Composites Datasheet

Learn the benefits of using MCQ-Composites for material property prediction.

GENOA Brochure

Description and benefits of the Progressive Failure Analysis tool from AlphaSTAR

CoDA Technical Demo

Short demo of CoDA for component and composite design analysis.

StressCheck Composites Analysis Product Brief

StressCheck data sheet highlighting its functionality in the areas of composite structure analysis and bonded joints

LAP Technical Demo

Short technical demonstration of LAP for layered composite analysis.

Composite Rotor Blade Analysis using Altair HyperWorks

As part of a senior design project – the design and analysis of a coaxial rotor craft – Christopher Van Damme, at the time of the project senior undergraduate student within the department of Engineering Mechanics at the University of Wisconsin-Madison, had to analyze a composite made helicopter rotor blade. In his analysis he had to employ Computer-Aided Engineering tools to cover the required studies regarding static, modal, frequency response, and dynamic analysis of the rotor.

Composite Modeling with FiberSim

This was a 2012 Americas HTC Composites training presentation given by Shan Nageswaran. This presentation focuses on Zone-based vs. Ply-based HyperWorks composite modeling approach, CATIA - CPD based composite modeling, Fibersim Interface, Conventional shell vs. Continuum shell / solid composite modeling, and optimization and future HyperWorks enhancements. HyperWorks tips for Ply based-PCOMPP and Zone based (PCOMP/PCOMPG) modeling for Multi laminate structures are also covered.

MCQ-Chopped Newsletter

About how MCQ-Chopped relates to various areas of composite modeling.

Implementing CAE into the Design Process for Composite Tennis Racquets at Wilson Sporting Goods

Wilson Labs, the innovation hub at Wilson Sporting Goods, leveraged OptiStruct and Altair ProductDesign for composites finite element analysis to reduce design cycle time and enhance product value.

Composite Material Analysis using StressCheck

Topics covered include: Composite materials, one of the most demanding analysis categories, and multiscale opportunities that StressCheck provides.

Zig Zag Crack Growth Analysis and Optimization in Composite Materials

AlphaSTAR's 2014 CAMX presentation showcasing GENOA and MCQ-Composites.

Composites Material Modeling for Aerospace Applications Using Digimat

Digimat contains a complete framework for progressive Failure Modeling that allow to capture more accurately the failure scenario that can happen during the working conditions.

Forming Simulation of Woven Composite Fibers and Its Influence on Crash Performance

The automotive industry, in its constant quest for weight reduction, is increasingly considering composite materials as a substitute for sheet metal components to meet future fuel consumption standards. However, composite forming processes are expensive and difficult to control because of the complexity of the material behavior with fiber and matrix layers or plies and its dependency on many parameters, such as non-linearity of tensile stiffness, effect of shear rate, temperature and friction. Hence, numerical simulation could be a viable approach to predict material behavior during composite forming. The objective of this study is to highlight capabilities of RADIOSS™ to simulate forming simulation of composite plies made from woven fibers, each ply modeled as a layer of woven fibers along two directions of anisotropy, warp and weft. For validation the well-known double dome model published in NUMISHEET’05 proceedings is used. The compared result is the shear angle after stamping that is, the final angle between warp and weft fibers, at several prescribed points on the ply. The variation of this angle has a strong impact on material characteristics which severely deteriorates when a critical value is reached. Hence, a study on crash simulations is performed, after mapping fibers angles from stamping simulation.

LAP Product Datasheet

Laminate Analysis Program (LAP) Product Datasheet from Anaglyph

About: GENOA & RADIOSS Module

Document outlining the GENOA/RADIOSS integration, including detailed instructions.

SwiftComp - Get the right results, right away!

Drawing on cutting-edge university research, SwiftCompâ„¢ provides an efficient yet accurate tool for computational modeling of composite materials and structures. It can be used either independently as a tool for virtual testing of composites or as a plugin to power conventional FEA codes with high-fidelity modeling for composites.

The Micromechanics Approach and Multiscale Modeling of Composites

Material modeling remains one of the interesting challenges in composites design. The APA's technical director discusses this topic and the solutions available from Altair.

Introduction to GENOA and MCQ

Learn about the composite model offerings available through GENOA and MCQ by AlphaStar, now included within the APA lineup.

Streamlining the Development of Glass Fiber Composite Products - CONVERSE + HyperWorks at Valeo China

Valeo was able to cover a broad range of simulation tasks for model preparation of glass fiber polymer composite parts by applying CONVERSE by PART Engineering alongside HyperWorks.

Componeering Partner Spotlight

Discussion with Componeering's Markku Palanterä and André Mönicke highlighting the benefits of the composites modeling software, ESAComp.

ESAComp for Automotive Use Case

ESAComp is software for analysis and design of composites. Its scope ranges from conceptual and preliminary design of layered composite structures to advanced analyses that are applicable to the final verification of a design.

Using HyperStudy and MultiMech for Advanced Composite Material Design

The purpose of this webinar is to demonstrate how sensitivity analysis can be used to uncover the “important” features of a composite system, so that material designers can intelligently work to extract (and improve on) the relevant properties. In this webinar we will be using the design exploration techniques found in Altair HyperStudy to perform a multiscale sensitivity analysis on the non-linear behavior of a chopped-fiber composite microstructure (Global Scale) with an embedded nano-silica matrix (Local Scale).

MapleSim to VisSim

Rapid physical modeling, analysis and model deployment to VisSim.

HyperWorks for Aerospace: Model Build Webinar

This webinar covers an overview of HyperMesh 14.0 and present live demos, including all the latest functionality of the 14.0.120 release.

ESAComp Showcase Video

2 minute video introduction to composites software, ESAComp, from Componeering

Composites Material Properties

This was a 2010 Americas HTC Presentation given by Roger Assaker from eXstream. This presentation highlights Multi-Scale Modeling of Reinforced Plastic Parts with Digimat to RADIOSS.

Composites Analysis and Optimization

This webinar explores and demonstrates the comprehensive capabilities of HyperWorks to analyze, design, and optimize composite laminated composite structures.

Delivering Enhanced Workflow for Advanced Sizing of Composite Structures

Challenges of composite structures design will be presented along with how these can be tackled using the ESAComp-HyperWorks integration, which extends existing composite specific post-processing capabilities of HyperWorks.

Using RADIOSS, HyperStudy and MultiMech for Improved Composite Design

The purpose of this webinar is to demonstrate how you can use the composite microstructure analysis tools of MultiMech to enhance the existing functionality of RADIOSS , specifically when dealing with the simulation of complex composite parts.

StressCheck Solutions for the Modern Aerospace Industry

StressCheck has become the “Go-To” tool in the aerospace industry for analysis of critical components, sub-assemblies and assemblies in the areas of detailed stress analysis, fracture mechanics, composite materials and many other applications exhibiting challenging detailed linear or non-linear behavior.

Aerospace Defense Stress Analysis with StressCheck

Over the past 25 years, ESRD has pioneered and developed an advanced FEA numerical simulation technology that is well-suited for detailed stress analysis of complex parts associated with the aerospace defense industry.

RD-2050 Random Response Analysis of a Flat Plate

Interactive Tutorial demonstrating how to set up the random response analysis for the existing frequency response analysis model.

CoDA Product Datasheet

Component Design Analysis (CoDA) Datasheet from Anaglyph


<b>A Safer Landing with Water Impact Analysis</b><br><br> Using Altair’s own HyperWorks virtual simulation suite, Altair ProductDesign built an accurate finite element model of the module from CAD data supplied by NASA, as well as a section of water and air which matched the conditions from the lake used during the physical tests. The effect on the module’s structure during impact was simulated to gauge how well the results correlated with the physical tests. The results showed excellent correlation between the simulation and physical tests, identifying areas where the model, input parameters and meshing methods could be improved to give a more accurate prediction of the event.

RD-2030 Modal Transient Dynamic Analysis of a Bracket

Interactive Tutorial demonstrating how to perform modal transient dynamic analysis using RADIOSS.

The 5 Most Common Mistakes Engineers Make In Thermal Modeling

Engineers and designers are increasingly relying on modeling solutions to prototype, test, prove and experiment as a means to more accurately predict how a built vehicle or other application will respond to various thermal conditions. While these methods are designed and promoted to save manufacturers time and money, five common mistakes made during the modeling phase can actually cost you more money, add time to the design cycle, and ultimately hurt product performance.

KTex Family Top Use Cases

Presentation introducing a few of the top use cases for the composites software, KTex Family.

Finite Element Modeling and Testing of Aerospace Seats under Crash Conditions

This was a 2012 Americas HTC Presentation given by Benjamin Walke from Embry-Riddle Aeronautical University. In an effort to enhance and supplement structural testing methods, specifically crash analysis, a simplified yet accurate FEA modeling method is developed to better understand a design performance during physical testing. A critical area of performance is crash test analysis. The modeling method was based upon crash conditions referenced from FAR 25.562 as well as physical test methods for crash analysis. The crash modeling utilizes HyperMesh, HyperCrash, and LS-DYNA so as to offer insight into structural performance.

Composite Plate Optimization with Practical Design Constraints

Composite free size optimization has the potential to generate weight savings and performance improvements for many applications of composite structures. Key to realizing such improvements is practical application of design and manufacturing constraints in the optimization model.

Progressive Failure Analysis on Aircraft Door Surround During Ground Service Equipment Impact

Digimat helps address the changes coming along with the replacement of metallic structures with composite structures.

Partner Spotlight: CEDREM

Edouard Ferry, Engineer at CEDREM, discusses composites software, KTEX Family, available through the Altair Partner Alliance.

Design and optimization of a high performance C-Class catamaran with HyperWorks

Reprint of the article published on composite solutions magazine 2/2016.

MultiMechanics Datasheet

General information about composites software from MultiMechanics.

ESAComp Datasheet

ESAComp Software for composites design data sheet.

Partner Spotlight: MultiMechanics

Interview with Leandro Castro, Founder of MultiMechanics, and the APA Team about composites software, MultiMech.

SwiftComp MicroMechanics and Altair Partner Alliance Brochure

Brochure containing valuable information about the composites software and its relationship with the APA.

Bird strike on an aeroplane underbelly fairing

What is the DIGIMAT advantage for composites?

Applications of Advanced Composite Simulation and Design Optimization

Usage of fiber reinforced composite material entered an new era when leading aircraft OEMs took an unprecedented step to design and manufacture essentially full composite airframe for commercial airliners. Composite structures offer unmatched design potential as the laminate material properties can be tailored almost continuously throughout the structure. However, this increased design freedom also brings new challenges for the design process and software. Moreover, as a relatively new material, composite behaviors are more complex and less fully understood by design engineers. Therefore, reliable simulation for highly complex events like bird strike and ditching can play an important role in shortening the product design cycle. This paper showcases two area of CAE tools for composite applications. On advanced simulation, bird strike simulation with Altair RADIOSS [1] is demonstrated on an aircraft underbelly fairing. On design optimization, an airplane wing structure is designed using an innovative composite optimization process implemented in Altair OptiStruct [1-3]. OptiStruct has seen increasing adoption among aerospace OEMs, as demonstrated in the Bombardier application process described in this paper.

HyperWorks 13.0 Lightweight Design and Composites

Altair is well-known for its expertise in designing lightweight and composites structures. In this webinar some of the new and enhanced features developed in HyperWorks 13.0 for composites modeling and visualization will be presented along with new material laws and failure criteria for laminated composites and polymers. New composites forming functionalities in HyperForm and the HyperMesh drape estimator will also be shown.

Numerical Methods in FEKO

FEKO offers a wide spectrum of numerical methods and hybridizations, each suitable to a specific range of applications. Hybridization of numerical methods allows large and complex EM problems to be solved.

Advance Electromangnetic Simulations and their Applications in Oil & Gas Industry

Advances in computational electromagnetic tools have made electromagnetic (EM) simulations possible for various applications. Now numerical simulations can be performed to evaluate the effects of antenna design, placement, radiation hazard, EMC/EMI, etc. for wide ranging industry applications. Numerical approaches that include full wave techniques such as Method of Moments (MoM), Multilevel Fast Multipole Method (MLFMM) and asymptotic techniques such as Physical Optics (PO) and Uniform Theory of Diffraction (UTD) are being utilized to solve many challenging problems that were not possible in the past.

Material Characterization and Qualification (MCQ) and MCQ-Composites

Introduction to GENOA's Material Qualification and Characterization (MCQ) family of modules representing a set of tools designed to simplify, verify and validate material models in order to produce accurate, reliable computational analyses.

RD-2000 Direct Frequency Repsonse Analysis of a Flat Plate

Interactive Tutorial demonstrating how to import an existing FE model, apply boundary conditions, and perform a finite element analysis on a flat plate.

RD-2010 Modal Frequency Response Analysis of a Flat Plate

Interactive Tutorial demonstrating how to import an existing FE model, apply boundary conditions, and perform a modal frequency response analysis on a flat plate.

Introduction to HyperMesh

Altair HyperMesh is a high-performance finite element pre-processor to prepare even the largest models, starting from import of CAD geometry to exporting an analysis run for various disciplines.

Stamping Process Integration of Composites in Crash Analysis

This was a 2013 European ATC presentation given by Cécile DEMAIN from Solvay Engineering Plastics. Thermoplastic composites (TPC) developed by Solvay Engineering plastics are composites based on polyamide 6 or 6.6 as a matrix and can be reinforced with glass fibers or carbon fibers. The two main interests vs. TPC. thermosetting composites are cycle time and recyclability. The development of TPC PA66 or short fiber hybrid structures / TPC PA66 is today's challenge.

A Comprehensive Process for Composite Design Optimisation

Composite structures offer unmatched design potential as laminate material properties can be tailored almost continuously throughout the structure. Moreover, composite laminate can be manufactured to fit the ideal shape of a structure for aerodynamic and other performances. However, this increased design freedom also brings new challenges for the design process and software. It is shown in this paper that optimization technology is well suited to exploit the potentials that composite materials offer.

GENOA and HyperWorks Integration for Advance Composite Product Design and Analysis

The increased demand for carbon fiber product in the form of reinforced polymers (CFRP); chopped fiber (elastomer, thermoplastic, thermoset) accelerates the GENOA software integration with Altair hyperwork solutions. The integrated package responds to greater need for more advanced and durable product development in automotive and aerospace industry. The presentation in details discusses to material modeling of composite type, analysis of laser fusion 3D printing, crush and impact of composite, and finally quest for optimization of shape and material including effect of defects, and uncertainties in manufacturing processes. In this regard the GENOA durability and damage tolerance software is integrated with Radios, and Optistruct to evaluate the structural integrity.

DOE Study Using HyperStudy and MADYMO

This tutorial outlines how to set up a DOE study in HyperStudy using Madymo as a solver.

Creating an Optimization Study Using HyperStudy and MADYMO

This tutorial illustrates how to setup an optimization study that combines MADYMO/Workspace Objective Rating with Hyperstudy.

ESAComp + HyperWorks Datasheet

This documents outlines the workflow for using ESAComp within the HyperWorks composite design process and provides an overview of ESAComp-HyperWorks interface capabilities.

Applying Optimization Technology to Drive Design of a 100-Meter Composite Wind Turbine Blade

This presentation demonstrates how numerical optimization can be applied using OptiStruct to aid in the design development of a 100-meter composite wind turbine blade.

Multibody Analysis of a Vending Machine

This was a 2013 European ATC presentation given by Dr. Marco Morone from Altran. It was performed a MB analysis of a vending machine. The aim of analysis was to analyze and optimize a cam in order to reduce the friction a acceleration peaks. A rigid MB model in Motion view was generated with contacts. From model results were optimized the cam profile was improved.

Speed and safety : composite materials in Motorsport

This was a 2012 Americas HTC Presentation given by Luca Pignacca from Dallara Automobili. This presentation gives an insight of what safety criteria govern the design and the manufacturing of modern racing cars , such as Formula 1 and Indycars, and will show how good engineering can be used to reduce the risk of fatalities for racing drivers. It will also explain the challenges which Dallara and Altair will face in the near future to develop new tools for the dynamic structural analysis of carbon composites structures.

HyperWorks provides flexibility and agility to development processes of Engineering Services Provider Beta Epsilon

Beta Epsilon designs racing cars and offers engineering. Beta Epsilon offers component and vehicle meshing, FEA analysis of metal and composite components, crash test simulation, optimization, and CFD simulation. Beta Epsilon uses HyperMesh, OptiStruct, HyperCrash, RADIOSS, AcuSolve, HyperView, and Virtual Wind Tunnel. With HyperWorks, Beta Epsilon could improve the quality of its products and extend its range of services.

Innovative Solutions for Bird Strike, Ditching and Impact

Learn about how RADIOSS can be used to model aerospace impact events including bird strike and ditching. Explore different modeling techniques and examples.

Introduction to KTex Family by CEDREM

KTex Family is a set of tools dedicated to composite materials to represent them precisely at the scale of the yarns and take into account the impact of manufacturing processes on their mechanical properties.

Advanced Composite Material Calculations at eStress Using HyperWorks, LAP and CoDA

eStress' needed to develop a practical and generalized approach to assess the behavior of curved composite beams under corner unfolding loading for design sizing. This process shows how HyperWorks, LAP and CoDA worked together to achieve this.

MCQ and A-B-Basis Allowables

A- and B-basis allowable strength values are essential for reducing risk in aircraft structural components made from fiber reinforced polymer composite materials. Risk reduction is achieved by lowering the probability of failure of critical aircraft structures through the use of A- and B-basis design values. Learn how MCQ can help achieve this.

Introduction to KTex Family Presentation

Presentation that accompanies KTex Family Introductory Webinar.

Multiscale Design Systems (MDS) for the Composites Industry

Unlike competing multiscale products, MDS is based on the scale-separation-free stochastic reduced order multiscale method, resulting in unmatched combination of practicality, mathematical rigor, verifiability and versatility.

Gasoline engine development using LOGEengine

LOGEengine is an integrated simulation method for the prediction and optimization of engine in-cylinder performance parameters and studies of fuel effects on exhaust emissions. It contains a stochastic reactor model for 0D modelling (0d-SRM) with local effects in gas-phase space, direct fuel injection, temperature and species concentrations as random variables, detailed chemical kinetics, prediction of engine exhaust emissions (Soot, NOx, uHC), turbulence consideration via mixing modeling and self-calibration. LOGEengine can also model soot formation for diesel engines using detailed kinetic soot models, with gas phase chemistry, soot particle inception, condensation, coagulation, surface growth and oxidation. It can run equivalence ratio - Temperature (f-T ) diagnostics maps for analysis of regimes of emission formation in diesel engines using zero-dimensional methods with low CPU cost. It analyses local inhomogeneities in gas-phase space for species concentration and temperature due to mixing, fuel injection and heat transfer to cylinder walls, and their influence on soot and NOx formation from different fuels and in individual combustion cycles.

ESAComp supporting the composite design process in the Automotive Industry

With the automotive industry more and more exploring the capabilities of composite materials, engineers face new challenges throughout the design process. For layered composite structures ESAComp is the right software to help you. This webinar will provide an overview on how to use ESAComp to efficiently tackle daily tasks concerning laminate design towards stiffness or strength criteria, structural elements (e.g. panels), data exchange with HyperWorks and integration into a workflow for optimization.

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm

This paper details the application of a specialised genetic algorithm to reduce the mass of a laminated composite wing rib. The genetic algorithm has been customised specifically to optimise the performance of polymer-laminated composites. The technology allows the mass to be minimized by the removal or addition of plies of various discrete orientations whilst satisfying the structural intent of the component. For the rib structure assessed, the structural constraints consist of limits placed on the displacement, stress (i.e. ply failure index) and buckling behaviour.

Targeting Composite Wing Performance – Optimum Location of Laminate Boundaries

This paper investigates the application of newly available optimization functionality available in OptiStruct to provide design guidance to generate innovative laminate composite solutions. Due to the flexibility of laminate composites, it has great potential to exhibit displacement characteristics that could significantly increase the aerodynamic performance. Free element sizing technology is used to determine concept lay-up solutions. These solutions determine the laminate make-up, thickness and the various laminate boundaries of an aircraft wing covers under multiple loading conditions which meet the required displacement targets whilst also minimising mass. These preliminary studies demonstrate that the technology can successfully achieve displacement targets for multiple load cases. Each analysis study can be completed within minutes and consequently can be utilised as a valuable concept design tool.

Partner Spotlight: ThermoAnalytics

Craig Makens, Vice President of ThermoAnalytics, shares some interesting details about his company's thermal analysis software, RadTherm.

Materials Property Data for Simulation Webinar - release of GRANTA MI:Materials Gateway™

Watch this 45-minutes webinar recording to find out how the new MI:Materials Gateway for HyperMesh application provides access to validated CAE materials models from directly within HyperMesh. See how to get the data you need, fast and error-free. Understand how and why leading engineering enterprises manage their materials information to ensure delivery of traceable, high quality information for simulation. GRANTA MI:Materials Gateway both provides access to this managed proprietary data and to a unique, comprehensive library of reference data on metals, plastics, composites, compiled over the 21 years since Granta’s spin-out from the University of Cambridge.

Advanced Design, Analysis and Optimization of Composite Structures

With stricter requirements on performance and weight, in many cases, composite materials are now becoming the natural choice of designers and engineers given their desirable characteristics such as low weight and high strength. Material properties can be tuned so they are directional – stiffer in one direction while compliant in another for example.

FEKO Integrated in HyperWorks 14.0

Altair’s computer-aided engineering (CAE) simulation software platform for simulation-driven innovation is Hyper- Works, which includes modeling, visualization, analysis and optimization technologies and solutions for structural, impact, electromagnetics, thermal, fluid, systems and manufacturing applications. The electromagnetics solver suite in HyperWorks is FEKO, a comprehensive electromagnetic analysis software used to solve a broad range of electromagnetic problems. It includes a set of hybridized solvers, giving the possibility to combine methods to solve complex and electrically large problems, with all solvers included in the same package.

HyperMesh and HyperView customization for thermal analysis of engine systems

This was a 2010 Americas HTC Presentation given by Emil Chouinard from GE Aviation. GE Aircraft Engines has many NPI (new product initiative) programs that rely on accurate and timely thermal analysis, as temperatures are critical to accurate estimates of hardware life. HyperMesh and HyperView have been customized as the pre and post processing tools, respectively, for thermal analysis of engine systems. The single database with relational data management greatly reduces modeling errors and results in Engineers being able to focus on the physics of the problem instead of data management.

COUSTYX Fast Multipole Acoustics

This was a 2010 Americas HTC Presentation given by Rajendra Gunda from ANSOL. Traditional Boundary Element Methods (BEM) for acoustic analysis have difficulty with large models and are thus limited to analysis of small bodies at low frequencies. Integration of the Fast Multipole Method (FMM) with BEM formulations in Coustyx results in vastly superior performance. In this presentation as a HyperWorks Alliance Partner, several automotive applications will highlight the computational speed and accuracy of Coustyx predictions.

A True Full Vehicle Simulation Solution that Enables Engineers to Develop Better Products, Faster

NVH Director is a fully integrated, user-friendly, and customizable solution for optimizing product design and performance. This is achieved by automating complex NVH modeling tasks while reducing solution and problem diagnosis times.<br><br> <i>This is the recorded webinar held on February 29, 2012.</i>

Interview with Hamish Lewis from TES International

Interview with TES International Engineering Manager, Hamish Lewis, discussing their software ThermoFlo & ElectroFlo

HyperWorks 14.0 Webinar: Computational Fluid Dynamics

Whether you’re an analyst performing CFD modeling every day, or an engineer with a need to understand the impact a CFD analysis will have on a proposed design, HyperWorks offers a complete suite of tools for both the expert and novice users. From detailed component analysis to full systems performance, HyperWorks is your solution for problems ranging from 100,000 to 1,000,000,000 elements in size with parallel scalable solvers and robust pre and post processing software. In this webianr, you will learn about the new features available in Altair's flagship CFD solver, AcuSolve, as well as what's new in HyperWorks for CFD pre and post processing.

Global-Local Analysis Using StressCheck, HyperMesh, HyperView and OptiStruct

This whitepaper describes the workflow for combining global and local analysis in structural development using StressCheck in combination with HyperWorks.

Time v Frequency Domain Analysis For Large Automotive Systems

It has been recognised since the 1960’s that the frequency domain method for structural analysis offers superior qualitative information about structural response; But computational and technological issues have held back the implementation for fatigue calculation until now. Recent technological developments have now enabled the practical implementation of the frequency domain approach and this paper will demonstrate this, with particular reference to the technology limitations that have been overcome, the resultant performance advantages, and accuracy. These techniques are of relevance to all the large automotive OEM’s as well as aerospace T1 suppliers and example case studies from these companies will be included.

3D Motor Analysis with JMAG

See how JMAG is used to perform 3D motor analysis.

Hybrid Finite Element Analysis of a Rotorcraft

The Hybrid FEA method, based on combining conventional Finite Element Analysis with Energy Finite Element Analysis for mid-frequency computations, is applied to a rotorcraft.

Blank Fit Manager

Blank Fit Manager offers accurate feasibility analysis, efficient cost analysis, an automated and flexible process and seamless forming data mapping.

Building a Better Impact / Crash Mesh Model (HyperMesh)

Finite element models to be used in crash analysis have unique requirements and Impact and Crash Simulations are especially sensitive to element size and quality. A combination of presentation and live demonstrations will highlight the powerful meshing capabilities of HyperMesh. Meshing techniques from basic to advanced will be shown that will provide insight into creating better crash models using the powerful tools within HyperMesh.

  • View Webinar Recording The Computational Fluid Dynamics (CFD) simulation environment is advancing rapidly and reducing many of the typical barriers for using advanced optimization techniques for design of CFD applications. In this webinar learn how the Altair HyperWorks suite of CAE tools can provide an unmatched solution that enables engineers and companies to overcome the challenges of optimization driven design of CFD applications.
Application of HyperWorks in the Subsea Oil and Gas Industry

The volatile nature of deep sea installations presents a difficult challenge for engineers to create products which can withstand extremely high pressures in a variety of weather conditions. Duco selected HyperWorks to model subsea umbilicals, resulting in improvements to their analysis productivity allowing models to be constructed faster than before.

Page: 1  2   3   4   5   6  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.