| Login


Resource Library

Keyword
GO
Categories










Industries














710 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • Portuguese
  • Spanish
Applications of Advanced Composite Simulation and Design Optimization

Usage of fiber reinforced composite material entered an new era when leading aircraft OEMs took an unprecedented step to design and manufacture essentially full composite airframe for commercial airliners. Composite structures offer unmatched design potential as the laminate material properties can be tailored almost continuously throughout the structure. However, this increased design freedom also brings new challenges for the design process and software. Moreover, as a relatively new material, composite behaviors are more complex and less fully understood by design engineers. Therefore, reliable simulation for highly complex events like bird strike and ditching can play an important role in shortening the product design cycle. This paper showcases two area of CAE tools for composite applications. On advanced simulation, bird strike simulation with Altair RADIOSS [1] is demonstrated on an aircraft underbelly fairing. On design optimization, an airplane wing structure is designed using an innovative composite optimization process implemented in Altair OptiStruct [1-3]. OptiStruct has seen increasing adoption among aerospace OEMs, as demonstrated in the Bombardier application process described in this paper.

A Comprehensive Process for Composite Design Optimisation

Composite structures offer unmatched design potential as laminate material properties can be tailored almost continuously throughout the structure. Moreover, composite laminate can be manufactured to fit the ideal shape of a structure for aerodynamic and other performances. However, this increased design freedom also brings new challenges for the design process and software. It is shown in this paper that optimization technology is well suited to exploit the potentials that composite materials offer.

The Micromechanics Approach and Multiscale Modeling of Composites

Material modeling remains one of the interesting challenges in composites design. The APA's technical director discusses this topic and the solutions available from Altair.

Materials Property Data for Simulation Webinar - release of GRANTA MI:Materials Gateway™

Watch this 45-minutes webinar recording to find out how the new MI:Materials Gateway for HyperMesh application provides access to validated CAE materials models from directly within HyperMesh. See how to get the data you need, fast and error-free. Understand how and why leading engineering enterprises manage their materials information to ensure delivery of traceable, high quality information for simulation. GRANTA MI:Materials Gateway both provides access to this managed proprietary data and to a unique, comprehensive library of reference data on metals, plastics, composites, compiled over the 21 years since Granta’s spin-out from the University of Cambridge.

MCQ-Composites Datasheet

Learn the benefits of using MCQ-Composites for material property prediction.

StressCheck Composites Analysis Product Brief

StressCheck data sheet highlighting its functionality in the areas of composite structure analysis and bonded joints

Optimization: Taking a Different Tack

A slick design and the use of new materials make the Fila sailboat a force to contend with on the competitive boat racing circuit.

ESAComp supporting the composite design process in the Automotive Industry

With the automotive industry more and more exploring the capabilities of composite materials, engineers face new challenges throughout the design process. For layered composite structures ESAComp is the right software to help you. This webinar will provide an overview on how to use ESAComp to efficiently tackle daily tasks concerning laminate design towards stiffness or strength criteria, structural elements (e.g. panels), data exchange with HyperWorks and integration into a workflow for optimization.

MotionSolve for Automotive

MotionSolve – Altair’s multi-body solution is an integrated solution to analyze and improve mechanical system performance. In the automotive industry, MotionSolve is used to design and evaluate new suspension systems, optimize the ride and handling characteristics of vehicles, assess system durability, simulate for low frequency vibration avoidance, design and optimize steering systems, and validate Mechatronics components.

Matereality-HyperWorks Connectivity and Enhancement: New CAE Modeler for RADIOSS

This brief tutorial introduces the new connectivity between Matereality Workgroup Material DatabasePro and RADIOSS.

CoDA Technical Demo

Short demo of CoDA for component and composite design analysis.

Composite Material Analysis using StressCheck

Topics covered include: Composite materials, one of the most demanding analysis categories, and multiscale opportunities that StressCheck provides.

Introduction to ChassisSim

Learn about the multi body vehicle dynamics offerings available through ChassisSim.

Using AlphaCell for quick & accurate sound package design in Heavy Industry

AlphaCell is an accurate solution for predicting the vibro-acoustic performances of sound packages including e.g. poro-elastic materials, perforated plates, visco-elastic materials, studded structures with inner filling, composite materials or materials with embedded inclusions.

Material Characterization and Qualification (MCQ) and MCQ-Composites

Introduction to GENOA's Material Qualification and Characterization (MCQ) family of modules representing a set of tools designed to simplify, verify and validate material models in order to produce accurate, reliable computational analyses.

Componeering Partner Spotlight

Discussion with Componeering's Markku Palanterä and André Mönicke highlighting the benefits of the composites modeling software, ESAComp.

Driving accurate engineering decisions through comprehensive material knowledge with Total Materia

Total Materia provides the world’s most comprehensive material properties database covering over 250,000 metals, plastics, composites and a range of other non-metallic materials. This webinar is designed to help demonstrate how having the right information available at the right time can not only save hours and even days of sourcing but improve information accuracy and help optimize early critical design decisions.

Mahindra Two Wheelers Success Story

Two-Wheeler Designer-Manufacturer Cuts New Component Time to Market and Optimizes Component Design with the Altair Partner Alliance

MCQ and A-B-Basis Allowables

A- and B-basis allowable strength values are essential for reducing risk in aircraft structural components made from fiber reinforced polymer composite materials. Risk reduction is achieved by lowering the probability of failure of critical aircraft structures through the use of A- and B-basis design values. Learn how MCQ can help achieve this.

Data discovery and how to seamlessly search, identify, and move material properties data using Total Materia and HyperMesh

An insightful introduction to Total Materia and its recent integration into Altair’s HyperMesh which allows access to the world’s most comprehensive materials database direct from the HyperMesh environment. This webinar will put data discovery in the context of the workflow and demonstrate how to search, identify and move material properties data seamlessly between Total Materia and the material card.

HyperMesh + Key to Metals Integration Demo

Short demonstration of how the new integration between HyperMesh and Key to Metals works.

HyperWorks 13.0 Lightweight Design and Composites

Altair is well-known for its expertise in designing lightweight and composites structures. In this webinar some of the new and enhanced features developed in HyperWorks 13.0 for composites modeling and visualization will be presented along with new material laws and failure criteria for laminated composites and polymers. New composites forming functionalities in HyperForm and the HyperMesh drape estimator will also be shown.

High Fidelity Vehicle Simulations Using MotionSolve-FTire and ChassisSim

Learn more about how you can leverage two of our leading multi-body simulation partners: cosin scientific software and ChassisSim Technologies for accurately performing vehicle simulations.

Multi-Scale Progressive Fatigue/Failure Analysis Using GENOA

A quick overview on how GENOA models Multi-Scale Progressive Fatigue/Failure Analysis in Composite Structure made of continuous fiber-reinforced polymer matrix (CFRP).

Matereality Tip: Create CAE Master Material Files for use in HyperWorks

Quick guide to creating material files in Matereality Workgroup Material DatabasePro that are compatible with HyperWorks.

Topology Optimisation Used to Achieve Frequency Targets of an Engine Bracket

Topology optimisation technology is becoming increasingly used in the design process of automotive components. This technology can be applied very effectively to simultaneously achieve static compliance and frequency targets for structural designs. The paper provides an industry perspective on how this technology is applied to a production bracket and the important role the designer and engineer play in converting the optimised material layout into a component which can be manufactured. It is demonstrated that the combination of topology optimisation and design knowledge can provide a design solution which could not otherwise have been achieved.

Risk Analysis of Tubing Design: Integrating DOE and Stochastic Study into Design Optimization

This was a 2010 Americas HTC Presentation given by Guijun Deng from Baker Hughes. In this presentation, a new design approach is presented: risk analysis of tubing design through integrating design of experiment (DOE) and stochastic study into design optimization. Application of the new approach using Altair HyperStudy will be illustrated by a design example involving a tubing design for a high pressure/ high temperature well, where both material properties and geometry are treated as randomized design variables. This process avoids over-conservative design and, therefore, excessive cost.

HyperForm Sheet Metal Forming Solution Provides Yield Improvement of Wheel Housing and Wheel Arch

Using Altair HyperForm, Mark Auto was able to significantly improve the material utilization for their existing production dies. Mark Auto re-designed two existing dies for wheel arch an wheel housing and was able to dramatically reduce material scrap with minimum rework in their tools while not compromising on component quality.

HyperWorks provides flexibility and agility to development processes of Engineering Services Provider Beta Epsilon

Beta Epsilon designs racing cars and offers engineering. Beta Epsilon offers component and vehicle meshing, FEA analysis of metal and composite components, crash test simulation, optimization, and CFD simulation. Beta Epsilon uses HyperMesh, OptiStruct, HyperCrash, RADIOSS, AcuSolve, HyperView, and Virtual Wind Tunnel. With HyperWorks, Beta Epsilon could improve the quality of its products and extend its range of services.

Crash Material Model Parameter Generation and Validation for Ductile Plastics

The Matereality Workgroup Material DatabasePro solution enabled through the Altair Partner Alliance allows Altair HyperWorks users access to browser-based software to build and maintain productivity enhancing material databases on the same platform that they use for product design. The integration of materials data with CAE tools strengthens the material core of their group’s PLM.

Using HyperStudy and MultiMech for Advanced Composite Material Design

The purpose of this webinar is to demonstrate how sensitivity analysis can be used to uncover the “important” features of a composite system, so that material designers can intelligently work to extract (and improve on) the relevant properties. In this webinar we will be using the design exploration techniques found in Altair HyperStudy to perform a multiscale sensitivity analysis on the non-linear behavior of a chopped-fiber composite microstructure (Global Scale) with an embedded nano-silica matrix (Local Scale).

StressCheck Solutions for the Modern Aerospace Industry

StressCheck has become the “Go-To” tool in the aerospace industry for analysis of critical components, sub-assemblies and assemblies in the areas of detailed stress analysis, fracture mechanics, composite materials and many other applications exhibiting challenging detailed linear or non-linear behavior.

Matereality Partner Spotlight

Paul Klinger, Matereality’s Director of Sales, discusses WorkGroup Material DatabasePro tips, tutorials and benefits of the material database software.

CoDA Product Datasheet

Component Design Analysis (CoDA) Datasheet from Anaglyph

Seeing Steel in a New Light

Advanced high-strength steels have emerged as one of the most sophisticated materials available for highly engineered product design.

SwiftComp - Get the right results, right away!

Drawing on cutting-edge university research, SwiftCompâ„¢ provides an efficient yet accurate tool for computational modeling of composite materials and structures. It can be used either independently as a tool for virtual testing of composites or as a plugin to power conventional FEA codes with high-fidelity modeling for composites.

Advanced Design, Analysis and Optimization of Composite Structures

With stricter requirements on performance and weight, in many cases, composite materials are now becoming the natural choice of designers and engineers given their desirable characteristics such as low weight and high strength. Material properties can be tuned so they are directional – stiffer in one direction while compliant in another for example.

Simultaneous Robust and Design Optimization of a Knee Bolster

This paper introduces a practical process to simultaneously optimize the robustness of a design and its performance i.e. finds the plateau rather than the peak. The process is applied to two examples, firstly to a composite cantilever beam and then to the design of an automotive knee bolster system whereby the design is optimized to account for different sized occupants, impact locations, material variation and manufacturing variation.

Optimising Vehicle Dynamics for Student Racing with Altair University

You will learn how to use multi-body dynamics (MBD) simulation tools from the Altair HyperWorks CAE suite to improve the design and performance of your student race car. By using Altair’s academic vehicle library, you can adapt suspension models to represent your existing half or full vehicle and make virtual changes to the design in order to improve stability and manoeuvrability.

Composite Modeling with FiberSim

This was a 2012 Americas HTC Composites training presentation given by Shan Nageswaran. This presentation focuses on Zone-based vs. Ply-based HyperWorks composite modeling approach, CATIA - CPD based composite modeling, Fibersim Interface, Conventional shell vs. Continuum shell / solid composite modeling, and optimization and future HyperWorks enhancements. HyperWorks tips for Ply based-PCOMPP and Zone based (PCOMP/PCOMPG) modeling for Multi laminate structures are also covered.

Matereality-HyperMesh Connectivity: Create CAE Master Material Files for Use in HyperMesh

This webinar will show how Matereality’s Workgroup Material DatabasePro on Altair’s HyperWorks platform brings a hurdle-free interaction with materials information for design engineers. Please note: You will need to login to Altair Connect to view this recording.

Forming Simulation of Woven Composite Fibers and Its Influence on Crash Performance

The automotive industry, in its constant quest for weight reduction, is increasingly considering composite materials as a substitute for sheet metal components to meet future fuel consumption standards. However, composite forming processes are expensive and difficult to control because of the complexity of the material behavior with fiber and matrix layers or plies and its dependency on many parameters, such as non-linearity of tensile stiffness, effect of shear rate, temperature and friction. Hence, numerical simulation could be a viable approach to predict material behavior during composite forming. The objective of this study is to highlight capabilities of RADIOSS™ to simulate forming simulation of composite plies made from woven fibers, each ply modeled as a layer of woven fibers along two directions of anisotropy, warp and weft. For validation the well-known double dome model published in NUMISHEET’05 proceedings is used. The compared result is the shear angle after stamping that is, the final angle between warp and weft fibers, at several prescribed points on the ply. The variation of this angle has a strong impact on material characteristics which severely deteriorates when a critical value is reached. Hence, a study on crash simulations is performed, after mapping fibers angles from stamping simulation.

FEKO: Electromagnetic Environmental Effects on Aircraft with Composite Materials

FEKO is well-suited for simulations involving anisotropic multi-layer carbon-fiber-reinforced composite materials.

Designing Composite Components for Automotive

Watch this 45-minute webinar recording to learn the latest advancements in composites design and optimization of carbon fiber composites and mixed material structures in the automotive industry.<br><br> Capabilities included in Altair HyperWorks as well as third party products available through the Altair Partner Alliance will be illustrated, showing real life examples of application.

Aerospace Defense Stress Analysis with StressCheck

Over the past 25 years, ESRD has pioneered and developed an advanced FEA numerical simulation technology that is well-suited for detailed stress analysis of complex parts associated with the aerospace defense industry.

Total Materia + Altair Partner Alliance Flyer

Highlights of how the Total Materia offering interacts within the APA.

MultiMechanics Datasheet

General information about composites software from MultiMechanics.

MultiMech2014 Release Notes

Latest updates, additions and information about MultiMech2014.

ESAComp Datasheet

ESAComp Software for composites design data sheet.

OptiStruct Cuts Development Time to Design a Light Weight and More Durable Window Regulator Lift Plate at ArvinMeritor

Using Altair OptiStruct, ArvinMeritor was able to design a lighter weight window regulator lift plate which eased assembly. The new snap-fit design reduced the material compared to original design, without sacrificing performance and durability.

The Use of MBD Modelling Techniques in the Design and Development of a Suspension System

This paper describes the use of Multi-body Dynamics (MBD) modelling techniques in the design and development of a suspension system for a novel autonomous vehicle. The general approach and philosophy is described, whereby MBD techniques are used in conjunction with an independent (parametric) whole vehicle handling simulation. This is supplemented with examples, showing how MotionSolve was used (in tandem with CarSim) to develop the suspension elasto-kinematic geometric properties to meet specific cascaded targets, to optimise a weighing strategy, to predict forces under a variety of quasi-static and dynamic loads, and to estimate response to track inputs.

MCQ-Chopped Newsletter

About how MCQ-Chopped relates to various areas of composite modeling.

Matereality Workgroup Material DatabasePro and HyperWorks Connectivity

Description and tutorial about the connection between Matereality Workgroup Material DatabasePro and HyperWorks.

ATCx - Inspire 2014 Overview

Presentation of "Inspire 2014 Overview." This was given by Russell Vernon, Application Engineer, solidThinking, at ATCx West on June 18, 2014.

MATELYS Partner Spotlight

Luc Jaouen of MATELYS discusses the Noise, Vibration & Harshness tool, AlphaCell, which specializes in porous materials.

Matereality WorkGroup Material DatabasePro Tech Spec Sheet

Informational document describing the technical specifications and capabilities of Matereality WorkGroup Material DatabasePro.

Improving Heating Boiler Acoustics at Viessmann: OptiStruct for Bead Pattern Optimization

Altair OptiStruct can be used to generate and optimize bead patterns for the effective design of sheet metal components. By using OptiStruct’s topography and shape optimization methods, sheet thicknesses can be reduced significantly, leading to both reduced material and a lower overall cost.

Composites Analysis and Optimization

This webinar explores and demonstrates the comprehensive capabilities of HyperWorks to analyze, design, and optimize composite laminated composite structures.

Delivering Enhanced Workflow for Advanced Sizing of Composite Structures

Challenges of composite structures design will be presented along with how these can be tackled using the ESAComp-HyperWorks integration, which extends existing composite specific post-processing capabilities of HyperWorks.

AlphaCell Top Use Cases

Presentation introducing a few of the top use cases for the NVH software, AlphaCell.

A hybrid finite element formulation for a beam-plate system

Appropriate damping elements are introduced in the connections between stiff and flexible members in order to capture the presence of the flexible members during the analyses of the stiff ones. The component mode synthesis method is combined with analytical solutions for determining the driving point conductance at joints between stiff and flexible members and for defining the properties of the damping elements which represent the flexible members when analyzing the stiff components. Once the vibration of the stiff members and the amount of power dissipated at the damping elements has been identified, an EFEA analysis is performed in order to determine the amount of vibrational energy in the flexible members.

Using Analysis to Innovate with New Materials

Analysis and optimization tools enable Samsung engineers to reduce the cost of appliances without sacrificing performance.<br><br> By Beverly A. Beckert<br> <i>Concept to Reality</i> Winter 2013 <a href="http://www.altair.com/MagazineFreeSubscription.aspx">Subscribe to C2R Magazine</a>

Materials and Material Management

When simulation results don’t make sense, what checks do you perform? Besides the modeling aspects of loads and boundary conditions, mesh sizes, right formulations, etc., the most often overlooked cause of problems is the wrong assignment of materials and properties in a solver input deck. In the midst of running many simulations it is so easy to modify values that users forget that what they intended for a part is not what is being analyzed. Identifying the correct material values and assigning them is such a crucial step in your analysis that any mistake can compromise the results and design decisions you make based on simulation.

GENOA and HyperWorks Integration for Advance Composite Product Design and Analysis

The increased demand for carbon fiber product in the form of reinforced polymers (CFRP); chopped fiber (elastomer, thermoplastic, thermoset) accelerates the GENOA software integration with Altair hyperwork solutions. The integrated package responds to greater need for more advanced and durable product development in automotive and aerospace industry. The presentation in details discusses to material modeling of composite type, analysis of laser fusion 3D printing, crush and impact of composite, and finally quest for optimization of shape and material including effect of defects, and uncertainties in manufacturing processes. In this regard the GENOA durability and damage tolerance software is integrated with Radios, and Optistruct to evaluate the structural integrity.

Crash Cad Calculate and HyperBeam Demo

Brief demonstration introducing the integration between Crash Cad Calculate and HyperBeam.

Partner Spotlight: Seac02

Matteo Gualano, the COO of Seac02, discusses augmented reality simulation and rendering software, LinceoVR, available through the Altair Partner Alliance.

Samsung Uses OptiStruct to Redesign Washing Machine Component for Optimized Weight and Material Usage

To carry out optimization on the pulley, Suzhou Samsung chose OptiStruct, a key component of Altair’s HyperWorks suite of computer-aided engineering tools and a modern structural analysis and optimization solver. “OptiStruct provided us with important optimization features,” said Mr. Cheng, “such as topology, size and shape optimization. We were particularly interested in topology optimization to obtain the most efficient structure or distribution of material used in the structure.”

AAM

AAM employed Inspire to redesign an automotive carrier with less weight (20%) and material usage than the original.

RADIOSS Case Study with PSA Peugeot Citroën and Bull

PSA Peugeot Citroën collaborated with Altair, Bull, PRACE and others to perform a study of automotive crash rupture simulations, investigating ways to improve material failure criteria and better predict cracks.

ESAComp Tip: How to Easily Find Materials

This document provides a step by step guide on how to apply the search function to find suitable materials for a given project.

Key to Metals' Premium Edition Interface to HyperMesh Tutorial

Video demontration of how to export material property data from Key to Metals' Premium Edition for use in HyperMesh.

The CAE Driven Safety Development Process of the New Ford Fiesta

The new Fiesta is about premium feel of a larger car, delivers a new level of safety, driving quality and efficiency. The new Fiesta will be a great contribution towards sustainability and cost effective motoring. The first thing to notice is the design, but the vehicle performance and body structure attribute behaviour are the specific highlights to point out in this presentation. The attribute performance is not based on coincidences; the performance is a result of state of the art engineering work. Especially the safety performance in EuroNCAP.

Biomedical Research at the Scripps Clinic: Modeling Orthopedic Implants with Altair HyperWorks

Every year, countless people — regardless of their age or level of physical activity — begin to experience the effects of osteoarthritis, a degenerative joint disease. As we age, the cartilage that cushions the joints begins to deteriorate. The head of the adjacent bones begin to break down from the friction, causing pain in the joint. When the condition worsens and non- surgical remedies are exhausted, surgeons may recommend joint replacement. Typically, titanium alloy implants are lined with plastics that act as cartilage and are fixed in place with cement or screws by the surgeon. The implants can give patients a new lease on life, dramatically reducing pain and improving mobility. However, questions naturally arise in the patient’s mind: How much range of motion will I have in the new joint? How much strength will I recover? And how long will the new joint last?

Digimat and RADIOSS for UD Material Modeling with Anisotropic Progressive Failure

The prediction of CFRP materials in the automotive industry requires simulation of the failure through an anisotropic progressive failure model, provided by Digimat.

Transmission Modeling and Simulation with MapleSim

Maplesoft has developed a MapleSim library of components, transmission sub-assemblies, and complete powertrain examples that show the use of these components in driveline applications. Built with guidance from several transmission manufacturers, this MapleSim library allows you to mix the best of physical models and empirical data to maximize model fidelity, optimize your designs, and improve overall vehicle fuel-efficiency.

Challenges to Extending Design Verification and Optimization in Completion Tool Development

The oil and gas industry has shifted dramatically in the past year. The forecast for the industry is extremely different today compared to just a couple of years ago. To adjust, oil and gas producers are focusing on driving capital and operating efficiency to preserve their margins.

Introduction to KTex Family by CEDREM

KTex Family is a set of tools dedicated to composite materials to represent them precisely at the scale of the yarns and take into account the impact of manufacturing processes on their mechanical properties.

Multiscale Design Systems (MDS) for the Composites Industry

Unlike competing multiscale products, MDS is based on the scale-separation-free stochastic reduced order multiscale method, resulting in unmatched combination of practicality, mathematical rigor, verifiability and versatility.

A Multifunctional Aerospace Smart Skin Emerges from Computational Models and Physical Experiments

The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, government agencies, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into “smart” vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ.

Multi Body Dynamics Simulation and Test Correlation of a Glove Box Mechanism using Motion Solve

This was a 2010 Americas HTC Presentation given by Arun Chickmenahalli from International Automotive Components Group. This presentation describes how IAC with the use of multi-body dynamic (MBD) simulations using MotionSolve software has made it possible to study the system and assess feasibility. At IAC, MotionSolve has been implemented and incorporated into the product development cycle to enhance the design efficiency, reduce cost and lead time.

Composites Material Properties

This was a 2010 Americas HTC Presentation given by Roger Assaker from eXstream. This presentation highlights Multi-Scale Modeling of Reinforced Plastic Parts with Digimat to RADIOSS.

HyperWorks Improves Development Processes in Automotive Industry

In 2008 PWO Germany (Progress-Werk Oberkirch AG) had to develop and produce a new steel made automotive cross car beam (CCB) for the dash board of a new car. PWO received the CAD model, the design space definition and other pre-defined standards of the component from the customer and developed and produced the fitting cross beam based on this information. PWO used the HyperWorks Suite to develop the component. HyperMesh was used to transfer the CAD model into a FEA model, which was then used to run dedicated analysis and simulation tasks. To fulfill the requirements for crash and modal analysis, the company used OptiStruct to optimize the component, RADIOSS and other external solver to run the calculations and HyperView for the post processing. HyperForm was used to check the production feasibility of the individual components and for metal forming simulation tasks. It was important for PWO to have a software suite available that could cover all simulation tasks within one graphical user interface and licensing system.

Topology Optimisation of an Aerospace Part to be Produced by Additive Layer Manufacturing (ALM)

OptiStruct helped EADS achieve significant weight savings in the design of ALM (additive Layer Manufacturing) components.

Speed and safety : composite materials in Motorsport

This was a 2012 Americas HTC Presentation given by Luca Pignacca from Dallara Automobili. This presentation gives an insight of what safety criteria govern the design and the manufacturing of modern racing cars , such as Formula 1 and Indycars, and will show how good engineering can be used to reduce the risk of fatalities for racing drivers. It will also explain the challenges which Dallara and Altair will face in the near future to develop new tools for the dynamic structural analysis of carbon composites structures.

Multi-physics with MotionSolve

This was a 2012 Americas HTC Presentation given by Keshav Sundaresh & Rajiv Rampalli from Altair. Due to its system level focus, multi-body simulation is a natural environment for integrating the different technologies together. MotionSolve is an Industry proven multi-body simulation tool that provides a logical environment to integrate different technologies and solve the combined problem. This presentation discusses three topics: (a) The need for multi-disciplinary simulations and strategies for combining models; (b) Simulating real world phenomena using MotionSolve; (c) Case studies illustrating how customers have successfully used MotionSolve to solve multi-physics problems.

Zig Zag Crack Growth Analysis and Optimization in Composite Materials

AlphaSTAR's 2014 CAMX presentation showcasing GENOA and MCQ-Composites.

Composites Material Modeling for Aerospace Applications Using Digimat

Digimat contains a complete framework for progressive Failure Modeling that allow to capture more accurately the failure scenario that can happen during the working conditions.

Advanced Composite Material Calculations at eStress Using HyperWorks, LAP and CoDA

eStress' needed to develop a practical and generalized approach to assess the behavior of curved composite beams under corner unfolding loading for design sizing. This process shows how HyperWorks, LAP and CoDA worked together to achieve this.

UK ATC 2015: How Analysis & Optimisation Help Meet the Time Consstraints in F1

Presentation by Simon Gardner, Sahara Force India

Topology Optimization of Racecar Suspension Uprights

This was an HTC 2011 presentation given by Billy Wight of Luxon Engineering. This presentation is a case study of applying Altair HyperWorks topology optimization techniques to the design and analysis of racecar suspension uprights. Utilizing manufacturing constraints, stress constraints, and multiple loadcases, topology optimization revealed an optimum material distribution in an efficient manner minimizing development time while maximizing design goals. This optimized design increases stiffness by 225% and reduces mass by 40% versus the original design while meeting stress constraints.

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm

This paper details the application of a specialised genetic algorithm to reduce the mass of a laminated composite wing rib. The genetic algorithm has been customised specifically to optimise the performance of polymer-laminated composites. The technology allows the mass to be minimized by the removal or addition of plies of various discrete orientations whilst satisfying the structural intent of the component. For the rib structure assessed, the structural constraints consist of limits placed on the displacement, stress (i.e. ply failure index) and buckling behaviour.

HyperWorks 11.0 Rollout Webinar Series - Solver Solutions (RADIOSS)

This groundbreaking release allows customers to use material and geometric non-linear implicit analysis functionality in RADIOSS. Also, many new linear analysis types are added like complex eigenvalue, response spectrum, and powerflow analysis. In addition, many extensions to the already existing analysis types are added such as acoustic sources and damping, pre-stressed normal modes, and static element deformation.

HyperWorks 11.0 Rollout Webinar Series - Concept Design and Optimization (OptiStruct®)

OptiStruct 11.0 further extends optimization functionality by expanding into the non-linear domain, adding full support of optimization disciplines for MBD, multi-start point optimization for better design space exploration, new manufacturing constraints for topology, improved handling of external responses and enhanced geometry recovery with OS Smooth.

MapView CAE Datasheet

MapView is a revolutionary tool for analyzing multi-dimensional data, allowing users to explore itsentire structure.

ChassisSim Case Study: Suspension Geometry Design

This case study describes a method to short circuit the suspension geometry design of a vehicle using the motorsport simulation package ChassisSim.

Applying Optimization Technology to Drive Design of a 100-Meter Composite Wind Turbine Blade

This presentation demonstrates how numerical optimization can be applied using OptiStruct to aid in the design development of a 100-meter composite wind turbine blade.

ESAComp + HyperWorks Datasheet

This documents outlines the workflow for using ESAComp within the HyperWorks composite design process and provides an overview of ESAComp-HyperWorks interface capabilities.

Comments on the Testing and Management of Plastics Material Data

Presentation delivered by Hubert Lobo at the CARHS Automotive CAE Grand Challenge in Hanau, Germany. This presentation reviewed our latest findings related to volumetric yield in polymers and its relationship to failure, as well as the material database technology that was created to store this kind of multivariate data and the analytical tools created to help the CAE engineer understand and use plastics material data.

Thales Alenia Space

Companies from across a wide range of industries are attempting to find the potential impact that additive manufacturing (AM) could have on design and manufacturing processes. During its own efforts to explore AM and its potential for space satellite development programs, Thales Alenia Space Spain wanted to conduct a research project to see how optimization techniques could be used in conjunction with new manufacturing technology. The primary objective of the study was to use design optimization techniques to reduce the thermal compliance of a satellite’s aluminium filter bracket, while also optimizing the component for weight and readying the final design for the additive manufacturing process.

Page: 1  2   3   4   5   6   7   8  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.