| Login


Resource Library

Keyword
GO
Categories










Industries














564 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Complexity
  • Composites
  • Concept Design
  • Crash & Safety
  • Design
  • Durability
  • Electromagnetic
  • Enterprise Solutions
  • Ergonomics
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • Portuguese
  • Spanish
Applications of Advanced Composite Simulation and Design Optimization

Usage of fiber reinforced composite material entered an new era when leading aircraft OEMs took an unprecedented step to design and manufacture essentially full composite airframe for commercial airliners. Composite structures offer unmatched design potential as the laminate material properties can be tailored almost continuously throughout the structure. However, this increased design freedom also brings new challenges for the design process and software. Moreover, as a relatively new material, composite behaviors are more complex and less fully understood by design engineers. Therefore, reliable simulation for highly complex events like bird strike and ditching can play an important role in shortening the product design cycle. This paper showcases two area of CAE tools for composite applications. On advanced simulation, bird strike simulation with Altair RADIOSS [1] is demonstrated on an aircraft underbelly fairing. On design optimization, an airplane wing structure is designed using an innovative composite optimization process implemented in Altair OptiStruct [1-3]. OptiStruct has seen increasing adoption among aerospace OEMs, as demonstrated in the Bombardier application process described in this paper.

A Comprehensive Process for Composite Design Optimisation

Composite structures offer unmatched design potential as laminate material properties can be tailored almost continuously throughout the structure. Moreover, composite laminate can be manufactured to fit the ideal shape of a structure for aerodynamic and other performances. However, this increased design freedom also brings new challenges for the design process and software. It is shown in this paper that optimization technology is well suited to exploit the potentials that composite materials offer.

Materials Property Data for Simulation Webinar - release of GRANTA MI:Materials Gateway™

Watch this 45-minutes webinar recording to find out how the new MI:Materials Gateway for HyperMesh application provides access to validated CAE materials models from directly within HyperMesh. See how to get the data you need, fast and error-free. Understand how and why leading engineering enterprises manage their materials information to ensure delivery of traceable, high quality information for simulation. GRANTA MI:Materials Gateway both provides access to this managed proprietary data and to a unique, comprehensive library of reference data on metals, plastics, composites, compiled over the 21 years since Granta’s spin-out from the University of Cambridge.

Optimization: Taking a Different Tack

A slick design and the use of new materials make the Fila sailboat a force to contend with on the competitive boat racing circuit.

ESAComp supporting the composite design process in the Automotive Industry

With the automotive industry more and more exploring the capabilities of composite materials, engineers face new challenges throughout the design process. For layered composite structures ESAComp is the right software to help you. This webinar will provide an overview on how to use ESAComp to efficiently tackle daily tasks concerning laminate design towards stiffness or strength criteria, structural elements (e.g. panels), data exchange with HyperWorks and integration into a workflow for optimization.

MotionSolve for Automotive

MotionSolve – Altair’s multi-body solution is an integrated solution to analyze and improve mechanical system performance. In the automotive industry, MotionSolve is used to design and evaluate new suspension systems, optimize the ride and handling characteristics of vehicles, assess system durability, simulate for low frequency vibration avoidance, design and optimize steering systems, and validate Mechatronics components.

Using AlphaCell for quick & accurate sound package design in Heavy Industry

AlphaCell is an accurate solution for predicting the vibro-acoustic performances of sound packages including e.g. poro-elastic materials, perforated plates, visco-elastic materials, studded structures with inner filling, composite materials or materials with embedded inclusions.

Introduction to ChassisSim

Learn about the multi body vehicle dynamics offerings available through ChassisSim.

Componeering Partner Spotlight

Discussion with Componeering's Markku Palanterä and André Mönicke highlighting the benefits of the composites modeling software, ESAComp.

Batch RIT and Nesting Tool

HyperForm supports for modeling the Hot Stamping process using a new material model (Hot Stamping HS Steel) that accounts for mechanical, thermal, and metallurgical changes during the forming process.

Mahindra Two Wheelers Success Story

Two-Wheeler Designer-Manufacturer Cuts New Component Time to Market and Optimizes Component Design with the Altair Partner Alliance

HyperWorks 13.0 Lightweight Design and Composites

Altair is well-known for its expertise in designing lightweight and composites structures. In this webinar some of the new and enhanced features developed in HyperWorks 13.0 for composites modeling and visualization will be presented along with new material laws and failure criteria for laminated composites and polymers. New composites forming functionalities in HyperForm and the HyperMesh drape estimator will also be shown.

Multi-Scale Progressive Fatigue/Failure Analysis Using GENOA

A quick overview on how GENOA models Multi-Scale Progressive Fatigue/Failure Analysis in Composite Structure made of continuous fiber-reinforced polymer matrix (CFRP).

Topology Optimisation Used to Achieve Frequency Targets of an Engine Bracket

Topology optimisation technology is becoming increasingly used in the design process of automotive components. This technology can be applied very effectively to simultaneously achieve static compliance and frequency targets for structural designs. The paper provides an industry perspective on how this technology is applied to a production bracket and the important role the designer and engineer play in converting the optimised material layout into a component which can be manufactured. It is demonstrated that the combination of topology optimisation and design knowledge can provide a design solution which could not otherwise have been achieved.

High Fidelity Vehicle Simulations Using MotionSolve-FTire and ChassisSim

Learn more about how you can leverage two of our leading multi-body simulation partners: cosin scientific software and ChassisSim Technologies for accurately performing vehicle simulations.

Risk Analysis of Tubing Design: Integrating DOE and Stochastic Study into Design Optimization

This was a 2010 Americas HTC Presentation given by Guijun Deng from Baker Hughes. In this presentation, a new design approach is presented: risk analysis of tubing design through integrating design of experiment (DOE) and stochastic study into design optimization. Application of the new approach using Altair HyperStudy will be illustrated by a design example involving a tubing design for a high pressure/ high temperature well, where both material properties and geometry are treated as randomized design variables. This process avoids over-conservative design and, therefore, excessive cost.

HyperWorks provides flexibility and agility to development processes of Engineering Services Provider Beta Epsilon

Beta Epsilon designs racing cars and offers engineering. Beta Epsilon offers component and vehicle meshing, FEA analysis of metal and composite components, crash test simulation, optimization, and CFD simulation. Beta Epsilon uses HyperMesh, OptiStruct, HyperCrash, RADIOSS, AcuSolve, HyperView, and Virtual Wind Tunnel. With HyperWorks, Beta Epsilon could improve the quality of its products and extend its range of services.

HyperForm Sheet Metal Forming Solution Provides Yield Improvement of Wheel Housing and Wheel Arch

Using Altair HyperForm, Mark Auto was able to significantly improve the material utilization for their existing production dies. Mark Auto re-designed two existing dies for wheel arch an wheel housing and was able to dramatically reduce material scrap with minimum rework in their tools while not compromising on component quality.

Crash Material Model Parameter Generation and Validation for Ductile Plastics

The Matereality Workgroup Material DatabasePro solution enabled through the Altair Partner Alliance allows Altair HyperWorks users access to browser-based software to build and maintain productivity enhancing material databases on the same platform that they use for product design. The integration of materials data with CAE tools strengthens the material core of their group’s PLM.

Matereality Partner Spotlight

Paul Klinger, Matereality’s Director of Sales, discusses WorkGroup Material DatabasePro tips, tutorials and benefits of the material database software.

CoDA Product Datasheet

Component Design Analysis (CoDA) Datasheet from Anaglyph

StressCheck Solutions for the Modern Aerospace Industry

StressCheck has become the “Go-To” tool in the aerospace industry for analysis of critical components, sub-assemblies and assemblies in the areas of detailed stress analysis, fracture mechanics, composite materials and many other applications exhibiting challenging detailed linear or non-linear behavior.

Seeing Steel in a New Light

Advanced high-strength steels have emerged as one of the most sophisticated materials available for highly engineered product design.

SwiftComp - Get the right results, right away!

Drawing on cutting-edge university research, SwiftCompâ„¢ provides an efficient yet accurate tool for computational modeling of composite materials and structures. It can be used either independently as a tool for virtual testing of composites or as a plugin to power conventional FEA codes with high-fidelity modeling for composites.

Advanced Design, Analysis and Optimization of Composite Structures

With stricter requirements on performance and weight, in many cases, composite materials are now becoming the natural choice of designers and engineers given their desirable characteristics such as low weight and high strength. Material properties can be tuned so they are directional – stiffer in one direction while compliant in another for example.

Simultaneous Robust and Design Optimization of a Knee Bolster

This paper introduces a practical process to simultaneously optimize the robustness of a design and its performance i.e. finds the plateau rather than the peak. The process is applied to two examples, firstly to a composite cantilever beam and then to the design of an automotive knee bolster system whereby the design is optimized to account for different sized occupants, impact locations, material variation and manufacturing variation.

Optimising Vehicle Dynamics for Student Racing with Altair University

You will learn how to use multi-body dynamics (MBD) simulation tools from the Altair HyperWorks CAE suite to improve the design and performance of your student race car. By using Altair’s academic vehicle library, you can adapt suspension models to represent your existing half or full vehicle and make virtual changes to the design in order to improve stability and manoeuvrability.

Composite Modeling with FiberSim

This was a 2012 Americas HTC Composites training presentation given by Shan Nageswaran. This presentation focuses on Zone-based vs. Ply-based HyperWorks composite modeling approach, CATIA - CPD based composite modeling, Fibersim Interface, Conventional shell vs. Continuum shell / solid composite modeling, and optimization and future HyperWorks enhancements. HyperWorks tips for Ply based-PCOMPP and Zone based (PCOMP/PCOMPG) modeling for Multi laminate structures are also covered.

MATELYS Partner Spotlight

Luc Jaouen of MATELYS discusses the Noise, Vibration & Harshness tool, AlphaCell, which specializes in porous materials.

OptiStruct Cuts Development Time to Design a Light Weight and More Durable Window Regulator Lift Plate at ArvinMeritor

Using Altair OptiStruct, ArvinMeritor was able to design a lighter weight window regulator lift plate which eased assembly. The new snap-fit design reduced the material compared to original design, without sacrificing performance and durability.

Forming Simulation of Woven Composite Fibers and Its Influence on Crash Performance

The automotive industry, in its constant quest for weight reduction, is increasingly considering composite materials as a substitute for sheet metal components to meet future fuel consumption standards. However, composite forming processes are expensive and difficult to control because of the complexity of the material behavior with fiber and matrix layers or plies and its dependency on many parameters, such as non-linearity of tensile stiffness, effect of shear rate, temperature and friction. Hence, numerical simulation could be a viable approach to predict material behavior during composite forming. The objective of this study is to highlight capabilities of RADIOSS™ to simulate forming simulation of composite plies made from woven fibers, each ply modeled as a layer of woven fibers along two directions of anisotropy, warp and weft. For validation the well-known double dome model published in NUMISHEET’05 proceedings is used. The compared result is the shear angle after stamping that is, the final angle between warp and weft fibers, at several prescribed points on the ply. The variation of this angle has a strong impact on material characteristics which severely deteriorates when a critical value is reached. Hence, a study on crash simulations is performed, after mapping fibers angles from stamping simulation.

The Use of MBD Modelling Techniques in the Design and Development of a Suspension System

This paper describes the use of Multi-body Dynamics (MBD) modelling techniques in the design and development of a suspension system for a novel autonomous vehicle. The general approach and philosophy is described, whereby MBD techniques are used in conjunction with an independent (parametric) whole vehicle handling simulation. This is supplemented with examples, showing how MotionSolve was used (in tandem with CarSim) to develop the suspension elasto-kinematic geometric properties to meet specific cascaded targets, to optimise a weighing strategy, to predict forces under a variety of quasi-static and dynamic loads, and to estimate response to track inputs.

ESAComp Datasheet

ESAComp Software for composites design data sheet.

MultiMech2014 Release Notes

Latest updates, additions and information about MultiMech2014.

FEKO: Electromagnetic Environmental Effects on Aircraft with Composite Materials

FEKO is well-suited for simulations involving anisotropic multi-layer carbon-fiber-reinforced composite materials.

Designing Composite Components for Automotive

Watch this 45-minute webinar recording to learn the latest advancements in composites design and optimization of carbon fiber composites and mixed material structures in the automotive industry.<br><br> Capabilities included in Altair HyperWorks as well as third party products available through the Altair Partner Alliance will be illustrated, showing real life examples of application.

Aerospace Defense Stress Analysis with StressCheck

Over the past 25 years, ESRD has pioneered and developed an advanced FEA numerical simulation technology that is well-suited for detailed stress analysis of complex parts associated with the aerospace defense industry.

ATCx - Inspire 2014 Overview

Presentation of "Inspire 2014 Overview." This was given by Russell Vernon, Application Engineer, solidThinking, at ATCx West on June 18, 2014.

Composites Analysis and Optimization

This webinar explores and demonstrates the comprehensive capabilities of HyperWorks to analyze, design, and optimize composite laminated composite structures.

Using Analysis to Innovate with New Materials

Analysis and optimization tools enable Samsung engineers to reduce the cost of appliances without sacrificing performance.<br><br> By Beverly A. Beckert<br> <i>Concept to Reality</i> Winter 2013 <a href="http://www.altair.com/MagazineFreeSubscription.aspx">Subscribe to C2R Magazine</a>

Materials and Material Management

When simulation results don’t make sense, what checks do you perform? Besides the modeling aspects of loads and boundary conditions, mesh sizes, right formulations, etc., the most often overlooked cause of problems is the wrong assignment of materials and properties in a solver input deck. In the midst of running many simulations it is so easy to modify values that users forget that what they intended for a part is not what is being analyzed. Identifying the correct material values and assigning them is such a crucial step in your analysis that any mistake can compromise the results and design decisions you make based on simulation.

Partner Spotlight: Seac02

Matteo Gualano, the COO of Seac02, discusses augmented reality simulation and rendering software, LinceoVR, available through the Altair Partner Alliance.

GENOA and HyperWorks Integration for Advance Composite Product Design and Analysis

The increased demand for carbon fiber product in the form of reinforced polymers (CFRP); chopped fiber (elastomer, thermoplastic, thermoset) accelerates the GENOA software integration with Altair hyperwork solutions. The integrated package responds to greater need for more advanced and durable product development in automotive and aerospace industry. The presentation in details discusses to material modeling of composite type, analysis of laser fusion 3D printing, crush and impact of composite, and finally quest for optimization of shape and material including effect of defects, and uncertainties in manufacturing processes. In this regard the GENOA durability and damage tolerance software is integrated with Radios, and Optistruct to evaluate the structural integrity.

RADIOSS Case Study with PSA Peugeot Citroën and Bull

PSA Peugeot Citroën collaborated with Altair, Bull, PRACE and others to perform a study of automotive crash rupture simulations, investigating ways to improve material failure criteria and better predict cracks.

AAM

AAM employed Inspire to redesign an automotive carrier with less weight (20%) and material usage than the original.

Biomedical Research at the Scripps Clinic: Modeling Orthopedic Implants with Altair HyperWorks

Every year, countless people — regardless of their age or level of physical activity — begin to experience the effects of osteoarthritis, a degenerative joint disease. As we age, the cartilage that cushions the joints begins to deteriorate. The head of the adjacent bones begin to break down from the friction, causing pain in the joint. When the condition worsens and non- surgical remedies are exhausted, surgeons may recommend joint replacement. Typically, titanium alloy implants are lined with plastics that act as cartilage and are fixed in place with cement or screws by the surgeon. The implants can give patients a new lease on life, dramatically reducing pain and improving mobility. However, questions naturally arise in the patient’s mind: How much range of motion will I have in the new joint? How much strength will I recover? And how long will the new joint last?

Transmission Modeling and Simulation with MapleSim

Maplesoft has developed a MapleSim library of components, transmission sub-assemblies, and complete powertrain examples that show the use of these components in driveline applications. Built with guidance from several transmission manufacturers, this MapleSim library allows you to mix the best of physical models and empirical data to maximize model fidelity, optimize your designs, and improve overall vehicle fuel-efficiency.

The CAE Driven Safety Development Process of the New Ford Fiesta

The new Fiesta is about premium feel of a larger car, delivers a new level of safety, driving quality and efficiency. The new Fiesta will be a great contribution towards sustainability and cost effective motoring. The first thing to notice is the design, but the vehicle performance and body structure attribute behaviour are the specific highlights to point out in this presentation. The attribute performance is not based on coincidences; the performance is a result of state of the art engineering work. Especially the safety performance in EuroNCAP.

Entity Management

Redundant entity management is enabled which provides the ability to control which FE/geometry, material, and/or property attributes are read into session.

Multiscale Design Systems (MDS) for the Composites Industry

Unlike competing multiscale products, MDS is based on the scale-separation-free stochastic reduced order multiscale method, resulting in unmatched combination of practicality, mathematical rigor, verifiability and versatility.

Introduction to KTex Family by CEDREM

KTex Family is a set of tools dedicated to composite materials to represent them precisely at the scale of the yarns and take into account the impact of manufacturing processes on their mechanical properties.

Challenges to Extending Design Verification and Optimization in Completion Tool Development

The oil and gas industry has shifted dramatically in the past year. The forecast for the industry is extremely different today compared to just a couple of years ago. To adjust, oil and gas producers are focusing on driving capital and operating efficiency to preserve their margins.

Topology Optimisation of an Aerospace Part to be Produced by Additive Layer Manufacturing (ALM)

OptiStruct helped EADS achieve significant weight savings in the design of ALM (additive Layer Manufacturing) components.

A Multifunctional Aerospace Smart Skin Emerges from Computational Models and Physical Experiments

The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, government agencies, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into “smart” vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ.

Composites Material Properties

This was a 2010 Americas HTC Presentation given by Roger Assaker from eXstream. This presentation highlights Multi-Scale Modeling of Reinforced Plastic Parts with Digimat to RADIOSS.

Multi Body Dynamics Simulation and Test Correlation of a Glove Box Mechanism using Motion Solve

This was a 2010 Americas HTC Presentation given by Arun Chickmenahalli from International Automotive Components Group. This presentation describes how IAC with the use of multi-body dynamic (MBD) simulations using MotionSolve software has made it possible to study the system and assess feasibility. At IAC, MotionSolve has been implemented and incorporated into the product development cycle to enhance the design efficiency, reduce cost and lead time.

Multi-physics with MotionSolve

This was a 2012 Americas HTC Presentation given by Keshav Sundaresh & Rajiv Rampalli from Altair. Due to its system level focus, multi-body simulation is a natural environment for integrating the different technologies together. MotionSolve is an Industry proven multi-body simulation tool that provides a logical environment to integrate different technologies and solve the combined problem. This presentation discusses three topics: (a) The need for multi-disciplinary simulations and strategies for combining models; (b) Simulating real world phenomena using MotionSolve; (c) Case studies illustrating how customers have successfully used MotionSolve to solve multi-physics problems.

Topology Optimization of Racecar Suspension Uprights

This was an HTC 2011 presentation given by Billy Wight of Luxon Engineering. This presentation is a case study of applying Altair HyperWorks topology optimization techniques to the design and analysis of racecar suspension uprights. Utilizing manufacturing constraints, stress constraints, and multiple loadcases, topology optimization revealed an optimum material distribution in an efficient manner minimizing development time while maximizing design goals. This optimized design increases stiffness by 225% and reduces mass by 40% versus the original design while meeting stress constraints.

HyperWorks Improves Development Processes in Automotive Industry

In 2008 PWO Germany (Progress-Werk Oberkirch AG) had to develop and produce a new steel made automotive cross car beam (CCB) for the dash board of a new car. PWO received the CAD model, the design space definition and other pre-defined standards of the component from the customer and developed and produced the fitting cross beam based on this information. PWO used the HyperWorks Suite to develop the component. HyperMesh was used to transfer the CAD model into a FEA model, which was then used to run dedicated analysis and simulation tasks. To fulfill the requirements for crash and modal analysis, the company used OptiStruct to optimize the component, RADIOSS and other external solver to run the calculations and HyperView for the post processing. HyperForm was used to check the production feasibility of the individual components and for metal forming simulation tasks. It was important for PWO to have a software suite available that could cover all simulation tasks within one graphical user interface and licensing system.

UK ATC 2015: How Analysis & Optimisation Help Meet the Time Consstraints in F1

Presentation by Simon Gardner, Sahara Force India

MapView CAE Datasheet

MapView is a revolutionary tool for analyzing multi-dimensional data, allowing users to explore itsentire structure.

Samsung Uses OptiStruct to Redesign Washing Machine Component for Optimized Weight and Material Usage

To carry out optimization on the pulley, Suzhou Samsung chose OptiStruct, a key component of Altair’s HyperWorks suite of computer-aided engineering tools and a modern structural analysis and optimization solver. “OptiStruct provided us with important optimization features,” said Mr. Cheng, “such as topology, size and shape optimization. We were particularly interested in topology optimization to obtain the most efficient structure or distribution of material used in the structure.”

ESAComp + HyperWorks Datasheet

This documents outlines the workflow for using ESAComp within the HyperWorks composite design process and provides an overview of ESAComp-HyperWorks interface capabilities.

Comments on the Testing and Management of Plastics Material Data

Presentation delivered by Hubert Lobo at the CARHS Automotive CAE Grand Challenge in Hanau, Germany. This presentation reviewed our latest findings related to volumetric yield in polymers and its relationship to failure, as well as the material database technology that was created to store this kind of multivariate data and the analytical tools created to help the CAE engineer understand and use plastics material data.

Applying Optimization Technology to Drive Design of a 100-Meter Composite Wind Turbine Blade

This presentation demonstrates how numerical optimization can be applied using OptiStruct to aid in the design development of a 100-meter composite wind turbine blade.

Balancing Manufacturability and Optimal Structural Performance for Laminate Composites through a Genetic Algorithm

This paper details the application of a specialised genetic algorithm to reduce the mass of a laminated composite wing rib. The genetic algorithm has been customised specifically to optimise the performance of polymer-laminated composites. The technology allows the mass to be minimized by the removal or addition of plies of various discrete orientations whilst satisfying the structural intent of the component. For the rib structure assessed, the structural constraints consist of limits placed on the displacement, stress (i.e. ply failure index) and buckling behaviour.

ChassisSim Case Study: Suspension Geometry Design

This case study describes a method to short circuit the suspension geometry design of a vehicle using the motorsport simulation package ChassisSim.

HyperWorks helps to improve development processes at F.S. Fehrer Automotive GmbH

F.S. Fehrer Automotive GmbH in Kitzingen is using the HyperWorks Suite to develop seat parts, form cushions and complete vehicle interior systems. The engineers use HyperWorks and especially RADIOSS for static and modal analysis. The seat of a vehicle is the direct and closest connection of the passenger with the automobile. Design and seating comfort play an important role in personalizing the vehicle model and convey the feeling of quality to the passenger. In addition, safety and variability are vital aspects for the development of interior parts of a vehicle.

MultiMechanics Showcase Video

2 minute video introduction to MultiMech for Composites Modeling & Analysis.

Introduction to GENOA and MCQ

Learn about the composite model offerings available through GENOA and MCQ by AlphaStar, now included within the APA lineup.

Crash Cad Calculate Release Notes: Version 2.0

Release notes highlighting what is new in version 2.0 of Crash Cad Calculate, including integration with HyperBeam.

ESAComp for Automotive Use Case

ESAComp is software for analysis and design of composites. Its scope ranges from conceptual and preliminary design of layered composite structures to advanced analyses that are applicable to the final verification of a design.

Scania

Scania uses Inspire to speed up its design and development process to produce lighter and more efficient components.

Performance Improvement of Recently Updated RADIOSS FE Dummy Models

This was a 2012 Americas HTC Presentation given by Nishant Balwan from Humanetics. With both versions of full FE dummy model and simplified “express” dummy model being introduced to vehicle design applications, the need to improve dummy models predictability is sought by taking into account of accuracy, cpu cost, and efficiency. The Hybrid-III family dummy models have been updated according to users input and application needs. This paper presents the latest modifications and performance improvement of H305 and H350 dummy models on component level as well as full dummy assembly level.

Daimler - Calculation of Optimal Damping Placement in a Vehicle Interior

One of the most difficult jobs of a NVH Analyst is to sift through a seemingly endless set of results and find the key conclusions that will improve a design. Different assumptions and different subsets of data can give very different conclusions. This paper compares acoustic results calculated for a Class 8 heavy duty truck cab to choose an optimal configuration of damping material. The design was evaluated for structure and air-borne inputs, but only structure-borne inputs are considered in this paper.

Speed and safety : composite materials in Motorsport

This was a 2012 Americas HTC Presentation given by Luca Pignacca from Dallara Automobili. This presentation gives an insight of what safety criteria govern the design and the manufacturing of modern racing cars , such as Formula 1 and Indycars, and will show how good engineering can be used to reduce the risk of fatalities for racing drivers. It will also explain the challenges which Dallara and Altair will face in the near future to develop new tools for the dynamic structural analysis of carbon composites structures.

Reliability Based Design Optimization in HyperStudy 10.0

A demonstration of the new Reliability Based Design Optimization Analysis available in HyperStudy 10.0.

Composite Optimisation of a Formula One Front Wing

This paper will show the application of a 3-stage approach to designing the optimum composite structure for a front wing on a Formula One car using Altair OptiStruct 9.0 Continual development of aerodynamic components is normal practice in the world of Formula One and the time taken to respond is paramount if a team is to be competitive.

Application of Optimisation Tools to the Design of Advanced Carbon Fibre Bicycle: FACTOR 001

FACTOR 001 is the result of a creative project by BERU f1systems to explore the transfer of design approaches, technology and materials from Formula One to a groundbreaking training bicycle. The design brief did not require the bicycle to comply with existing technical regulations, which resulted in great freedom during the design process. This paper details how OptiStruct Optimisation tools were used to help generate efficient lightweight solutions for the design of complex carbon fibre components. Free-size optimisation was used to generate laminate boundaries, ply thicknesses and fibre directions, which met stress and displacement requirements. Physical testing carried out on manufactured parts highlighted the accuracy of the FE models and demonstrated the advantages of incorporating OptiStruct Optimisation tools in the design process.

Step Change in Design: Exploring Sixty Stent Design Variations Over Night

Traditionally, computer analysis has been used to verify the structural performance of a proposed stent design. The stent deployment process consists of multiple stages (e.g. crimping, springback, expansion etc.) which is highly non-linear inducing material plasticity and load transfer via component contact. A single structural verification assessment would require a couple of days to compute on a PC. This paper investigates how recent developments in Computer Aided Engineering (CAE) and computer hardware combine to facilitate the rapid exploration of many stent design variations. It is demonstrated that by utilising these technologies, over sixty stent design variables can be assessed overnight provides valuable design sensitivity information and an optimum stent geometry configuration. On an example baseline geometry considered the radial stiffness was significantly enhanced with an improvement in structural performance. This represents a step change in the CAE assessment of a stent design.

Advanced Features for External Automotive Aerodynamics Using AcuSolve

Watch this 45-minute webinar to learn more on the use of advanced features for solving “on road” external automotive aerodynamics with Altair’s CFD solver AcuSolve. The webinar will focus on the analysis of external aerodynamics for passenger and racing vehicles while performing turning maneuvers. AcuSolve’s mesh motion capabilities, along with real time cosimulation with Altair’s multi-body dynamics solver, MotionSolve give engineers the ability to better simulate actual road conditions.

Partner Spotlight: AlphaSTAR Corporation

Interview with the AlphaSTAR CTO, Dr. Frank Abdi, about the challenges addressed by composite analysis software GENOA and MCQ-Composites

Optimal Design Exploration Using Global Response Surface Method: Rail Crush

As design exploration and optimization methods have become commonly accepted across a range of industries, such as aerospace, automotive or oil and gas, they are frequently utilized as standard practice to efficiently produce designs and aid critical engineering decisions. The widespread acceptance of these methods coupled with the power of modern computing has led to applications across a range of design problems and ever-increasing complexity. The size and scope of this expansion continually pushes the boundaries of existing exploration and optimization methods. Furthermore, a complete exploration of the optimal design space includes computationally intensive features such as multi-objective optimization, to understand the trade-off between competing objectives, and global optimization, to avoid local extrema.

MotionSolve for Heavy Industry

MotionSolve by Altair delivers a multi-body, integrated solution to analyze and improve mechanical system performance. MotionSolve enables accurate modeling of the challenging complexity of heavy machinery including large operating loads on structural components, controls with hydraulic actuation systems and detailed hydraulic circuit descriptions, tire behavior, tire-soil interaction, and driver behavior.

Peter Macapia, LabDORA

Architect Peter Macapia is exploring new frontiers in architectural design; a different way of looking at the design of buildings thanks to solidThinking Inspire.

Electromagnetic Interference in Automotive and Aerospace

Both the automotive and aerospace industries face ever-increasing Electromagnetic Interference challenges. In the automotive case, new problems arise due to proliferation of electric and hybrid cars, which carry high-voltage systems, and of wireless infotainment and safety systems, which use high frequencies. The aerospace industry’s challenges are exacerbated by the use of composite materials and by the need to protect against lightning strikes. This presentation will discuss many of the challenges and explain how they can be met with simulation. A few practical examples involving cable harnesses will be analyzed in more depth.

Failure Criteria for Stamping Analysis in RADIOSS

In this paper, several failure criteria are compared in their ability to predict necking point and failure propagation during a forming process. The paper has been presented at the 2014 IDDRG Conference in Paris, France.

Partner Spotlight: Key to Metals

Interview with Key to Metals CEO Viktor Pocajt

Smart Multiphysics: Explosives and Concrete Material Simulation in RADIOSS



APA + HyperWorks for Multiphysics

Overview of multiphysics solutions available via the Altair Partner Alliance.

Re-Loc

Re-Loc is a UK based company that developed a new product to help to accelerate the process of positioning metal reinforcement bars inside concrete bricks. The Re-Loc product is a clip that fits tightly inside the brick’s cavity and attaches to the bar, holding it securely in place as the cavity is fillled with concrete. The team had already developed a rough design and proved that it could perform its intended job, but problems arose when it came to the high manufacturing cost of the product. Re-Loc approached Altair ProductDesign to explore ways of reducing material use and cost from the part and to bring the design to a production level.

OptiStruct Plays a Key Role in the Air Wing Design for a Multi-Disciplinary, Collaborative University Capstone Design Project

The Georgia Tech Institute of Technology (Georgia Tech) took the lead in collaborating with five Universities to develop a senior-level capstone design course that would give engineering students collaborative design experience using state-of the art computational tools. The multi-disciplinary course was completed over two semesters. Students, under the direction of University professors and industrial mentors, completed a fixed-wing aircraft design.

Multimatic Engages Altair Partner Alliance to Boost Business and Extend Analysis of Its Automotive Systems

As challenges to the auto industry became more complex, Multimatic needed to adopt new software tools to offer a broader range of component and system analyses. By accessing the APA suite of software, they were able to expand their capabilities and complete simulation work in a faster and more complete fashion, thus helping customers mitigate risk in their system designs.

Partner Spotlight: Sentient Science

Wesley Thomas, the Business Development Manager at Sentient Science, discusses DigitalClone Component for fatigue analysis of rotating components.

MBS 14.0 for Aerospace

In this overview, you will see some of the new features in the MBS solution designed, for the Aerospace Industry.

MBS 14.0 for Automotive

In this overview, you will see some of the new features in the MBS solution, designed for the Automotive industry.

Partner Spotlight: MultiMechanics

Interview with Leandro Castro, Founder of MultiMechanics, and the APA Team about composites software, MultiMech.

HyperWorks 12.0 Rollout Webinar Series HyperStudy for Multi-Disciplinary Design Exploration and Optimization (NEW!)



SwiftComp MicroMechanics and Altair Partner Alliance Brochure

Brochure containing valuable information about the composites software and its relationship with the APA.

Page: 1  2   3   4   5   6  

RSS icon Subscribe to RSS Feed

Subscribe to join our Newsletter
Learn about product training, news, events and more.